UNIVERSIDADE FEDERAL DE MINAS GERAIS

CURSO DE MESTRADO EM GEOTECNIA E TRANSPORTES

Análise da eficiência de áreas de carga e descarga através da aplicação de dissimilaridade e diversidade em redes *multiplex*

Jorge Luiz dos Santos Junior

Belo Horizonte
2019

Jorge Luiz dos Santos Junior

Análise da eficiência de áreas de carga e descarga através da aplicação de dissimilaridade e diversidade em redes *multiplex*

Dissertação apresentada ao Curso de Mestrado em Geotecnia e Transportes da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Geotecnia e Transportes.

Área de concentração: Transportes

Orientadora: Leise Kelli de Oliveira

Coorientadora: Laura Carpi

Belo Horizonte Escola de Engenharia da UFMG 2019

S237a

Santos Júnior, Jorge Luiz dos.

Análise da eficiência de áreas de carga e descarga através da aplicação de dissimilaridade e diversidade em redes *multiplex* [recurso eletrônico] / Jorge Luiz dos Santos Júnior. – 2019.

1 recurso online (76 f. : il., color.) : pdf.

Orientadora: Leise Kelli de Oliveira. Coorientadora: Laura Corina Carpi.

Dissertação (mestrado) - Universidade Federal de Minas Gerais, Escola de Engenharia.

Anexo: f.68-76. Bibliografia: f. 8-67.

Exigências do sistema: Adobe Acrobat Reader.

Transportes - Teses.
 Cargas e descargas - Teses.
 Distribuição de mercadorias - Teses.
 Transportes - planejamento - Teses.
 Oliveira, Leise Kelli. II. Carpi, Laura Corina. III. Universidade Federal de Minas Gerais. Escola de Engenharia. IV. Título.

CDU: 656(043)

Ficha catalográfica: Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG.

UNIVERSIDADE FEDERAL DE MINAS GERAIS

FOLHA DE APROVAÇÃO

Análise da eficiência de áreas de carga e descarga através da aplicação de dissimilaridade e diversidade em redes multiplex

JORGE LUIZ DOS SANTOS JUNIOR

Dissertação submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em GEOTECNIA E TRANSPORTES, como requisito para obtenção do grau de Mestre em GEOTECNIA E TRANSPORTES, área de concentração TRANSPORTES.

Aprovada em 17 de dezembro de 2019, pela banca constituída pelos membros:

Prof. Leto Kelli de Oliveira - Orientadora

Prof. Bruno Vieira Bertoncini UFC

Prof. Glaydston Mattos Ribeiro

UFRJ

Belo Horizonte, 17 de dezembro de 2019.

AGRADECIMENTOS

Primeiramente eu gostaria de agradecer a Deus por toda a força, pela oportunidade da realização deste sonho e pelo dom da vida.

À Universidade Federal de Minas Gerais, que me proporcionou essa oportunidade. Aos professores e funcionários do Departamento de Engenharia de Transportes e Geotecnia da Escola de Engenharia.

À minha querida orientadora Professora Doutora Leise Kelli de Oliveira, pelo grande desafio proposto, pela confiança e pela honra de poder trabalhar ao seu lado durante todo este tempo, por estar SEMPRE disponível e por ser muito mais que uma orientadora, mas sim uma confidente e uma grande incentivadora. Se não fosse por todo o apoio, conselhos e puxões de orelha eu não teria chegado até aqui.

Aos meus pais, Jorge e Fátima que são sem sombra de dúvidas os meus maiores exemplos de força, ética, garra e caráter. Por sempre acreditarem em mim e por serem os maiores e mais sinceros incentivadores, não apenas deste, mas de todos os desafios da minha vida.

As minhas irmãs, pela disponibilidade e companheirismo de sempre, cada uma delas sabe como pontualmente auxiliaram no meu crescimento como pessoa.

À todos os meus amigos e demais familiares que assistiram mesmo que de longe toda a luta e que entenderam as minhas ausências.

À minha amada esposa Aline, que pode compartilhar comigo toda esta experiência, pelo seu pleno companheirismo, por entender todas as minhas angustias e por suportar as minhas ausências.

Ao meu filho que ainda não chegou, mas que já encheu a minha vida de amor e felicidade.

À todos que de alguma forma contribuíram nesta trajetória e na conclusão desta etapa.

Muito obrigado.

"It's a long way to the top If you wanna rock 'n' roll" Angus Young

RESUMO

O transporte urbano de cargas tem papel fundamental no desenvolvimento econômico e social das cidades, sendo um componente importante a ser inserido no planejamento urbano. A racionalização do transporte urbano de carga contribui para a eficiência da cadeia de suprimentos e para funcionamento da cidade. Neste contexto, as áreas de carga e descarga tem um papel fundamental na racionalização das atividades de carga em áreas urbanas. Assim esta dissertação tem por objetivo avaliar a eficiência das áreas de carga e descarga para a distribuição urbana de cargas através da modelagem de uma rede complexa multicamada e cálculo da dissimilaridade e diversidade. Para aplicação dos conceitos, foi realizado um estudo na região central de Belo Horizonte. A rede complexa multicamadas é formada por 698 áreas de carga e descarga (nós) interagindo com 1.317 estabelecimentos comerciais divididos em 10 setores do comércio (camadas). Os resultados das análises de dissimilaridade e diversidade indicaram a importância de determinados setores do comércio para a rede de distribuição analisada, além da relevância e contribuição de determinadas áreas de carga e descarga para a diversidade da rede. Os resultados permitem concluir que quanto maior a acessibilidade das áreas de carga e descarga aos estabelecimentos comerciais, menor é a sua área de cobertura. Estes resultados indicam um trade-off interessante das políticas públicas para a carga e a dinâmica da operação das empresas de transporte: alta acessibilidade favorece as empresas de transporte, reduzindo tempo de entrega e, consequentemente, custo de distribuição. Contudo, alta acessibilidade implica um elevado número de áreas de carga e descarga em via pública, reduzindo o espaço urbano a ser compartilhado com outras atividades tão importantes como a distribuição de mercadorias.

Palavras-Chaves: Redes Complexas, Redes Multicamadas, Diversidade, Dissimilaridade, Distribuição Urbana de Mercadorias, Áreas de carga e descarga.

ABSTRACT

The urban transport of goods plays a fundamental role in the economic and social development of the cities, being an important component in urban planning. The rationalization of urban transportation of goods contributes to supply chain efficiency and the functionality of the city. In this context, the loading and unloading areas play a fundamental role in the rationalization of loading activities in urban areas. This study aims to evaluate the efficiency of loading and unloading areas for urban load distribution by modelling a complex multilayer network and calculating dissimilarity and diversity. For the application of the concepts, a study was conducted for the central region of Belo Horizonte. The complex multilayer network consists of 698 loading and unloading areas (nodes), interactive with 1.317 commercial establishments divided into 10 trade sectors (layers). The results of the analysis about dissimilarity and diversity show the important role of some trade sectors for the diversity of the distribution network analysed, as well as the relevance and the contribution of some loading and unloading areas to the diversity of the network. The results allow to conclude that higher is the accessibility of loading and unloading areas to commercial establishments, the smaller is the coverage area. The results also showed an interesting tradeoff of public policies for cargo and the dynamics of the transport companies' operation: high accessibility supports transport companies, reducing delivery time and, consequently, distribution costs. However, high accessibility involves a large number of loading and unloading areas on the public streets, reducing the urban space that should be shared with other activities as important as the distribution of goods.

Keywords: Complex Networks, Multilayer Networks, Diversity, Dissimilarity, Urban Distribution of Goods, Loading and Unloading Areas

SUMÁRIO

1	IN	TRODUÇÃO	8
	1.1	OBJETIVOS DO TRABALHO	13
	1.2	CONTRIBUIÇÃO CIENTÍFICA E JUSTIFICATIVA	14
	1.3	ESTRUTURA DA DISSERTAÇÃO	14
2	RE	VISÃO DA LITERATURA	16
	2.1	CONCEITO DE REDE	16
	2.2	REDES REAIS	18
	2.3	Representação das Redes em Grafos e Matrizes	20
	2.4	CONCLUSÃO DO CAPÍTULO	22
3	RE	CDES MULTICAMADAS	23
	3.1	REDES MULTIPLEX	24
	3.2	APLICAÇÕES DO CONCEITO DE REDE MULTIPLEX EM TRANSPORTE	25
	3.3	MEDIDAS DE DIVERSIDADE EM REDES	27
	3.4	CONCLUSÃO DO CAPÍTULO	34
4	ΜÉ	ÉTODO DE PESQUISA	36
	4.1	ÁREA DE ESTUDO E DADOS DE ENTRADA	36
	4.2	GEORREFERENCIAMENTO DOS DADOS E OBTENÇÃO DAS DISTÂNCIAS DA REDE	39
	4.3	OBTENÇÃO DA REDE MULTIPLEX	40
	4.4	CÁLCULO DA DIVERSIDADE DOS NÓS	43
	4.5	CONCLUSÃO DO CAPÍTULO	44
5	RE	SULTADOS E DISCUSSÕES	45
	5.1	Dados do estudo	45
	5.2	RESULTADOS GLOBAIS DA REDE	46
	5.3	RESULTADOS LOCAIS DA REDE	52
6	CO	ONSIDERAÇÕES FINAIS	60

REFERÊNCIAS BIBLIOGRÁFICAS62

LISTA DE FIGURAS

Figura 1– Desenho ilustrativo do problema das sete pontes de Königsberg
Figura 2 – Representação visual de um grafo simples não orientado
Figura 3 – Rede europeia de gasodutos (Carvalho <i>et al.</i> , 2009)20
Figura 4 – Grafo genérico com 6 vértices e 7 arestas
Figura 5 – Exemplo de grafo e matriz adjacência
Figura 6 – Exemplo de redes multicamadas
Figura 7 – Exemplo de cálculo de diversidade
Figura 8 - Rede multiplex composta por 4 camadas e 9 nó
Figura 9 – Etapas do método de pesquisa
Figura 10 - Município de Belo Horizonte e área central
Figura 11 – Exemplo de informações de área de carga e descarga
Figura 12 – Exemplo de informações de estabelecimentos comerciais
Figura 13 – Código de geração de endereços para geocodificação
Figura 14 – Correções ArcGis
Figura 15 – Algoritmo para obtenção dos grafos da rede <i>multiplex</i> para cada setor do comércio
Figura 16 – Algoritmo para definição de limites
Figura 17 – Algoritmo de conexão entre a tabela binária e as camadas da rede multiplex42
Figura 18 – Exemplo de <i>Edge List</i>
Figura 19 – Ilustração teórica de Rede <i>Multiplex</i> para o caso em estudo
Figura 20 – Algoritmo para cálculo de diversidade
Figura 21 – Localização das áreas de carga e descarga

Figura 22 - Distribuição dos estabelecimento da camada 3 e 9	49
Figura 23 – Distribuição dos estabelecimento da camada 8	50
Figura 24 – Diversidade global <i>versus</i> distância	50
Figura 25 – Rede de áreas de carga e descarga.	52
Figura 26 – Dissimilaridade do nó para a distância de 25 metros	53
Figura 27 – Mapa de calor da dissimilaridade do nó para distância de 25 metros	54
Figura 28 – Dissimilaridade dos nó	55
Figura 29 – Dissimilaridade do nó para distância de 50 metros	57
Figura 30 – Dissimilaridade do nó para distância de 75 metros	57
Figura 31 – Dissimilaridade do nó para distância de 100 metros	58
Figura 32 – Dissimilaridade do nó para distância de 150 metros	58

LISTA DE TABELAS

Tabela 1 – Principais aplicações de redes complexas multicamadas e o ano de publicação14	4
Tabela 2 – Setores considerados na pesquisa.	9
Tabela 3 – Distribuição dos estabelecimentos comerciais por setor	5
Tabela 4 - Análise de dissimilaridade das camadas para distância de até 25 metros47	7
Tabela 5 - Análise de dissimilaridade dos setores analisados	8
Tabela 6 – Ordenação dos setores que contribuem com a diversidade global da rede5	1
Tabela 7 – Amostra de dissimilaridade de áreas próximas a centros comerciais50	6

1 INTRODUÇÃO

A distribuição urbana de mercadorias é um fator indispensável para a economia das áreas urbanas, visto o papel que desempenha no apoio e manutenção das atividades industriais e comerciais essenciais para a geração de outras atividades criadoras de riqueza (Allen *et al.*, 2007). Além disso, o abastecimento urbano influencia na eficiência da economia, na geração de empregos e na manutenção de atividades industriais e comerciais, sendo indispensável na competitividade da indústria no desenvolvimento da região e na manutenção do estilo de vida (Allen *et al.*, 2007).

Contudo, historicamente, o foco do planejamento em transportes concentrou-se nas pessoas (Dablanc, 2007; Oliveira *et al.*, 2017; Silva; Ferreira, 2017), uma vez que a cidade ainda fosse vista apenas como local de interação humana. Assim, o planejamento do transporte urbano de mercadorias foi deixado de lado contribuindo ainda mais para as externalidades associadas à atividade nos centros urbanos. A complexidade da distribuição urbana, a variedade da demanda por mercadorias e a reduzida capacidade de expansão da infraestrutura viária contribuem para o aumento dos congestionamentos, que por sua vez acarretam um maior consumo de combustível, com consequente aumento na poluição sonora, atmosférica e visual; conflitos entre o transporte de pessoas e de transporte de carga; obstruções ao trânsito com consequente redução da velocidade além dos problemas ambientais e de segurança (CNT, 2018).

A falta e o uso inapropriado da áreas de carga e descarga constituem um dos principais problemas do transporte urbano de cargas (Oliveira *et al.*, 2014; Prata *et al.*, 2018; Taniguchi; Aiura, 2005). Este fato, identificado por Oliveira (2014) para Belo Horizonte, se estende para outras áreas urbanas brasileiras (Oliveira *et al.*, 2019). As operações de carga e descarga geralmente ocorrem na via pública (Taniguchi; Aiura, 2005) e com a maioria dos veículos de carga estacionados de maneira inadequada (muitas vezes, os veículos de carga param em fila dupla para realizar entregas) (Debauche, 2006; Routhier *et al.*, 2014). Desta forma, a falta de infraestrutura adequada para uma operação eficiente da carga/descarga contribui na formação de congestionamento, atrasos nas entregas e consequente aumento da frota para que a demanda diária seja atendida, onerando os custos de distribuição urbana.

Além disso, a falta de racionalização das áreas de carga e descarga implica na ocupação destas áreas por outros veículos (Taniguchi *et al.*. 2001; Oliveira *et al.*, 2014). Oliveira (2014) relata que 57,7% das áreas de carga e descarga na região central de Belo Horizonte são

ocupadas por veículos particulares, sem função de operação de carga, ou seja, inoperantes. Além disso, são poucas as áreas destinadas as operações de carga e descarga em cidades latino-americanas (Prata *et al.*, 2018). Em contrapartida, cidades europeias entendem esta atividade como prioritária e as áreas de carga e descarga são maiores e em maior número (Dablanc, 2009). Como exemplo, em Paris, as áreas de carga e descarga na via pública devem ter pelo menos 10 metros de comprimento para facilitar o estacionamento do veículo e o manuseio das mercadorias. Além disso, deve haver, no mínimo, uma área a cada 100 metros de via pública (Dablanc, 2009).

Considerando esta problemática, a literatura pertinente apresenta metodologias para localização, dimensionamento e melhor utilização de áreas de carga e descarga. Wilson et al. (2019) apresentam um modelo de localização de áreas de carga e descarga de acordo com a demanda de entrega, considerando capacidades distintas das áreas, a probabilidade do motorista de entrega encontrar com sucesso uma vaga para estacionar na rua do destino, o tempo despendido pelo motorista para caminhar do local estacionado até o destino de entrega da mercadoria, regras de uso e ocupação do solo e um fator de sensibilidade da linha de base especificado pelo formulador de políticas. O referido modelo foi testado para o distrito de La Candelaria que se localiza na região metropolitana de Bogotá. O recorte espacial de estudo conta com aproximadamente 883 estabelecimentos comerciais em uma área de um pouco mais de 1 quilometro quadrado. O modelo apresentado identifica um número razoável de áreas de carregamento para atender a área em questão, que se trata de uma área de intensa atividade comercial. A formulação do modelo representa um trade-off entre as entregas que são descarregadas em espações urbanos próprios para estacionamento de veículos de carga e por entregas realizadas por veículos estacionados de maneira inadequada. A distribuição dos locais candidatos em toda a zona é um fator importante na obtenção de um resultado modelo razoável em termos de viabilidade de implementação. Como resultado o modelo validou a utilização de 187 áreas de carga e descarga para o período de pico e 49 para o período fora pico. Devido à localização simples, mas estratégica, dos locais candidatos, observa-se que os compartimentos de carga ativos estão bem dispersos por toda a zona de estudo, constituindo apenas alguns lugares de estacionamento por bloco.

Loureiro *et al.* (2012) propõem um procedimento para localização e alocação de áreas de carga e descarga baseado no modelo de localização de instalações. O procedimento identifica e caracteriza a área de estudo, caracteriza o setor de entrega, determina a frequência de entrega ou demanda dos estabelecimentos comerciais e define um nível de serviço desejado para atendimento da demanda do estabelecimentos comerciais. Após definir os parâmetros de

entrada e identificar os locais potenciais para instalação das áreas, o procedimento determina a localização por meio do problema de cobertura de conjuntos. O procedimento foi aplicado em uma área de teste na cidade de Campinas e os resultados indicaram que foram necessárias 27 áreas de carga e descarga para atender a demanda de 56 pontos localizados na área de estudo, utilizando dois modelos de sequenciamento de localização (um modelo de cobertura completa e um modelo de cobertura máxima).

Jaller *et al.* (2013) discutem o problema de locais de estacionamento para operações de carga e descarga de mercadorias em uma grande área congestionada considerando o equilíbrio entre a demanda por estacionamento gerada pela atividade e a oferta de áreas de estacionamento. Os autores propõem uma metodologia para estimar a demanda de estacionamento para veículos comerciais que realizam a distribuição de mercadorias e a disponibilidade de espaço para estacionamento. A demanda por locais regulamentados para estacionamento é estimada como uma função das viagens de caminhão produzidas e atraídas pelos estabelecimentos comerciais, enquanto a disponibilidade de estacionamento na via pública é presumida como uma função das dimensões do espaço disponível para estacionar e as características do veículo. Os resultados indicam que alternativas como a precificação do estacionamento podem não resolver o problema da escassez de áreas para carga e descarga.

Prata et al. (2018) apresentam modelos matemáticos para a localização de áreas de carga e descarga com base no problema de cobertura e formulação de problemas de p-mediana. A metodologia utilizada consiste na aplicação do modelo matemático sobre os estabelecimentos comerciais a serem atendidos, ressaltando a densidade da atividade comercial, áreas disponíveis para carga e descarga e testes de área de abrangência com variações de distâncias do estabelecimento comercial até o ponto de carga/descarga dos veículos. Esta metodologia foi testada com dados reais da cidade de Fortaleza, em uma área que conta com 160 quadras e 60 áreas de carga e descarga. Como resultado, concluiu-se que os modelos matemáticos apresentados contribuíram e tem potencial para obter ganhos em termos de redução da distância entre os clientes e os locais de carga e descarga: considerando que a distância média é um indicador de desempenho (relação entre a distância total e os clientes cobertos), um raio de influência de 400 metros tem melhor relação (0.489) e todos os clientes estão cobertos. Os resultados indicam que o modelo pode ser usado pelos planejadores para alocar áreas de carga e descarga.

Observa-se que nos estudos apresentados acima, a análise foi feita considerando apenas variáveis alocadas em uma única rede, e que não foram consideradas interações entre as

diversas variáveis consideradas, ou seja, todas foram tratadas em um único momento (camada única) e desconsiderando eventuais variações temporais que poderiam influenciar nos resultados finais.

Neste contexto, a modelagem em redes complexas pode auxiliar nas pesquisas anteriormente apresentadas se for assumida correlações entre disponibilidade de vagas, utilização efetiva, taxa de ocupação entre outras variáveis que podem incrementar e responder algumas questões ainda sem solução. Para tanto podem ser utilizadas análises em redes de múltiplas camadas, visto que as análises ficariam mais precisas e assertivas.

O estudo de redes complexas surge da análise de redes sociais (do inglês, *social network analysis*) na década de 1930, se consolidando na década de 1970. O estudo desenvolvido por S. Milgram mensurou a distância social entre duas pessoas escolhidas aleatoriamente e concluiu que as pessoas estavam a aproximadamente "seis graus de separação" de qualquer outro indivíduo no mundo, identificando o efeito do "mundo pequeno" (Ferris *et al.*, 2002), posteriormente formalizado em Watts (1998).

Nos últimos anos, com o grande avanço das metodologias propostas pela ciência das redes complexas e as suas diversas aplicações, tem surgido vários estudos dedicados à análise do sistema urbano de transporte como um sistema complexo (Aleta; Meloni; Moreno, 2017; Chodrow *et al.*, 2016; Joubert; Meintjes, 2016)

Sistemas complexos são sistemas compostos por muitos elementos interdependentes que interagem em forma complexa, usualmente não-linear. Nesta definição genérica encaixam-se uma infinidade de sistemas reais e artificias, que vão desde sistemas sociais (organização humana, mobilidade, comunicação, disseminação de doenças, etc.), sistemas biológicos (genes, proteínas, bactérias, etc.) até a esfera dos sistemas logísticos (sistemas de produção, transporte, logísticos, etc.).

Estes sistemas geralmente mudam a sua estrutura no tempo (sistemas dinâmicos), podendo incluir ou excluir elementos ou enlaces. Um dos mecanismos mais interessantes para analisar a natureza e dinâmica desses sistemas é através da conectividade de seus componentes, isto é, da rede que relaciona seus integrantes.

Os sistemas de transporte urbano podem ser estudados isoladamente ou podem ser considerados como sistemas multicamadas, por exemplo, onde cada modo de transporte (metro, trem ou ônibus) constitui uma camada, e onde existem alguns pontos nos quais essas

camadas se comunicam e permitem o fluxo entre elas. Estes sistemas são chamados de sistemas multiplex e constituem uma nova abordagem, não só para sistemas de transporte e logística, mas também para redes de genes, ecológicas e neurológicas, entre muitas outras.

Segundo Kivelä *et al.* (2014), as redes multicamadas podem representar um grande número de sistemas naturais já que são compostas por inúmeros subsistemas que interagem entre si com padrões complexos, podendo abranger variados tipos de relacionamentos. Esta flexibilidade torna as redes multicamadas uma ferramenta poderosa capaz de representar sistemas complexos com maior acurácia.

A pesquisa em redes multicamadas, que é uma extensão das redes complexas, pode ser conceituada na interseção entre a teoria dos grafos e a estatística, conferindo uma natureza multidisciplinar. Estas redes são caracterizadas por representar um conjunto de elementos em que ligações dependem da característica da rede que se deseja analisar (Costa *et al.*, 2007).

Uma das formas de se analisar as redes multicamadas é através da medida de diversidade, em termos de variedade dos padrões de conexão das diferentes camadas. Em linhas gerais, relaciona-se o conceito de diversidade a fundamentos de variedade, diferença, pluralidade, entre outras definições relacionadas. Page (2014) relata que a diversidade pode ser medida de três maneiras distintas:

- Diversidade dentro de um tipo ou variação, referindo-se a diferenças na quantidade de algum atributo ou característica, como por exemplo a altura das girafas;
- Diversidade de tipos ou espécies em sistemas biológicos, referindo-se a diferenças no tipo, como os diferentes tipos de alimentos que devem ser mantidos em um refrigerador;
- Diversidade de composição, se referindo às diferenças em como os tipos são organizados, como receitas e moléculas.

Visto isto, observa-se que diversidade só é observada sob populações ou coleções de entidades, inviabilizando análises em conjuntos unitários, corroborando a aplicabilidade no âmbito dos sistemas complexos (Page, 2014). Assim sendo, torna-se inviável abordar o tema diversidade sem relacioná-la com o conceito de complexidade. A medida de diversidade tem sido aplicado a estudos de ecologia, disseminação de doenças, economia, para averiguar a influência desse conceito em outro determinado conceito como, por exemplo, a interferência da diversidade no mercado econômico e no equilíbrio das ações o que pode ser traduzido também em redes complexas (Kivelä *et al.*, 2014; Page, 2014).

Seguindo esta abordagem, neste trabalho objetiva-se analisar o comportamento de uma medida de diversidade proposta por Carpi *et al.* (2018), que foi baseada nas medidas de dissimilaridades entre redes, definidas por Schieber *et al.* (2017). Tais dissimilaridades são relativas às configurações estruturais de conectividade das entidades, nós ou camadas de uma rede *multiplex*, tipo especial de rede multicamada onde os nós são replicados em todas as camadas. Neste estudo, utilizar-se-á o conceito proposto por Carpi *et al.* (2018) para analisar um sistema *multiplex* constituído por nós correspondentes a pontos de carga e descarga de uma região de Belo Horizonte, e a camadas que representam 10 diferentes segmentos do mercado conforme apresentado na Tabela 1.

Tabela 1 – Setores do comércio

01	Comércio varejista de produtos alimentícios em geral ou especializado em produtos alimentícios não especificados anteriormente
02	Comércio varejista de produtos farmacêuticos, sem manipulação de fórmulas
03	Comércio varejista de doces, balas, bombons e semelhantes
04	Comércio varejista de bebidas
05	Comércio varejista de mercadorias em geral, com predominância de produtos alimentícios - minimercados, mercearias e armazéns
06	Comércio varejista de hortifrutigranjeiros
07	Padaria e confeitaria com predominância de revenda
08	Comércio varejista de laticínios e frios
09	Comércio varejista de produtos farmacêuticos, com manipulação de fórmulas
10	Comércio atacadista de mercadorias em geral, sem predominância de alimentos ou de insumos agropecuários

1.1 Objetivos do trabalho

Este trabalho tem como objetivo avaliar a eficiência das áreas de carga e descarga para a distribuição urbana de mercadorias utilizando a medida de diversidade de uma rede *multiplex*. Desenvolveu-se um estudo exploratório para a região central de Belo Horizonte com um enfoque central em 10 setores do comércio que serão apresentados nos próximos capítulos.

Para tanto, são objetivos específicos:

- Propor um método para obtenção de dados para definição de uma rede multiplex das áreas de carga e descarga;
- Avaliar a aplicabilidade de redes multiplex para medição de eficiência da utilização das áreas de carga e descarga;
- Medir a diversidade global das redes para diferentes áreas de cobertura;
- Medir a dissimilaridade das áreas de carga e descarga para diferentes setores econômicos;

1.2 Contribuição científica e justificativa

Boccaletti et al. (2006) afirmam que o estudo de redes complexas constitui um campo de forte caráter multidisciplinar de pesquisa. Na área de Engenharia de Transportes, a utilização de redes complexas ainda é limitada, podendo-se citar os trabalhos de Aleta et al. (2017) para o transporte de passageiros, Halu et al., (2014) e Varga (2016) para o transporte aéreo e Kaluza et al. (2010) para o transporte de marítimo de cargas. Na revisão da literatura, foram identificados mais de 98 trabalhos, contudo nenhum que relacionasse redes complexas multicamadas com o transporte urbano de mercadorias (Tabela 2). Assim, este estudo contribui para a literatura, tornando-se um dos primeiros estudos com aplicação de redes multicamadas para analisar esta importante área.

Tabela 2 – Principais aplicações de redes complexas multicamadas e o ano de publicação.

Redes Multicamadas	2008	2011	2013	2014	2015	2016	2017	2018	2019	Total Geral
Redes Sociais	1	1	2	5	9	5	19	4	7	53
Transporte Público			1	4	3	3	6	1	3	21
Estudo de Tráfego						1	2	4	2	9
Transporte Aéreo				1	1	2	2		1	7
Redes Epidemiológicas					2		1	2		5
Transporte Marítimo							1		2	3
Total Geral	1	1	3	10	15	11	31	11	15	98

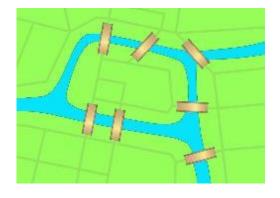
No que tange a problemática, Dablanc (2007) afirma que distribuição urbana de mercadorias é tratada como coadjuvante no planejamento urbano das cidades, sendo o foco dos estudos essencialmente o transporte de passageiros. Neste contexto, o presente trabalho também justifica-se pela carência de estudos abrangendo, especificamente, a aplicação de redes complexas na análise da distribuição urbana. Como contribuição técnica, apresenta-se uma metodologia para analisar e medir a eficiência das áreas de carga e descarga no meio urbano, permitindo estender este estudo a outras áreas urbanas e realizar análises comparativas de eficiência e utilização de áreas de carga e descarga de diferentes cidades.

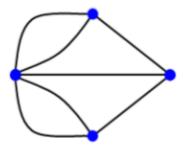
1.3 Estrutura da dissertação

Este trabalho está estruturado em seis capítulos, iniciando por esta seção introdutória. No capítulo 2 será apresentada a revisão bibliográfica sobre as redes complexas, desde a sua concepção até o período atual. O capítulo 3 apresenta o tema central desta pesquisa, as redes multicamadas, enfatizando as redes *multiplex* e reiterando a importância das redes complexas. O capítulo 4 apresenta a proposta metodológica para esta dissertação que descreve as

definições e aplicações de dissimilaridade e diversidade em redes *multiplex* e o método para obtenção de dados para a aplicação pretendida. Os resultados e discussões da metodologia aplicada e todas as etapas da aplicação são detalhados no Capítulo 5. Por fim, o Capítulo 6 apresenta as considerações finais, as limitações do estudo e sugestões para outras análises.

2 REVISÃO DA LITERATURA


Neste capítulo é apresentada a literatura relativa as redes complexas desde o seu conceito básico até a sua caracterização. Apresenta-se ainda a concepção de redes, a caracterização de redes complexas e suas variáveis.


2.1 Conceito de rede

As redes se apresentam nos dias atuais das mais variadas formas, de uma certa maneira que a sua modelagem pode representar redes físicas ou não, aplicando-se conceitos da teoria de grafos (Ahuja *et al.*, 2006).

Segundo Newman (2002), o conceito de redes tem origem no século XVIII com o trabalho do matemático Leonard Euler solucionando o problema das pontes de *Königsberg*. A cidade de *Königsberg* foi construída às margens do rio Pregel, com sete pontes interligando as ilhas da cidade. Euler avaliou a possibilidade de atravessar as sete pontes que separavam as ilhas da cidade prussiana, passando uma única vez em cada uma das sete pontes. Euler definiu as ilhas como vértices, e as pontes como arestas, ou ligações. Euler fez uso de um grafo, como representado na Figura 1. A solução do problema parecia simples, visto que todos os vértices (ilhas) tinham um número ímpar de arestas (pontes). Contudo, Euler demonstrou que era impossível cruzar as sete pontes sem jamais repetir um mesmo caminho, isto é explicado pelo fato de cada nó do grafo de *Königsberg* ter um número ímpar de arestas (três nós possuíam três arestas e dois nós, cinco arestas), e a travessia nas condições propostas era impossível.

Figura 1– Desenho ilustrativo do problema das sete pontes de Königsberg.

Contudo, este problema pode ser retratado através de grafos. De acordo com Ahuja $et\ al$, (2006), um grafo direcionado pode ser representado por G=(N,E), como um conjunto N de n nós e um conjunto E de arestas. Cada aresta une nós adjacentes i e j, constituindo-se um par ordenado de elementos distintos. Nos grafos não direcionados, os nós são unidos por arestas, que são pares não ordenados de nós. As redes são frequentemente representadas por grafos em

que se associam valores numéricos aos nós e arestas. Uma aresta (i, j) indica a possibilidade de um fluxo x_{ij} partindo do nó i e chegando ao nó j. Uma aresta entre os nós i e j pode ser representada por (i,j) ou (j,i).

Figura 2 – Representação visual de um grafo simples não orientado.

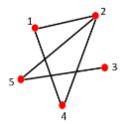


Ilustração de um grafo com 5 nós (N) e 5 arestas (E), em que $N = \{1;2;3;4;5\}$ e $E = \{\{1;2\};\{1;4\};\{2;4\};\{2;5\};\{3;5\}\}.$

Os pontos representam os nós do grafo e as linhas ligando os diferentes pontos representam as conexões entre eles.

A característica comum de muitos sistemas é que eles podem ser representados através de grafos, com os nós representando um conjunto de entidades individuais e as arestas representando as interações entre essas entidades.

As redes que representam sistemas do mundo real diferem substancialmente das redes aleatórias, já que a sua topologia e a sua evolução apresentam propriedades organizacionais bastante robustas. As estruturas das redes reais não são aleatórias nem completamente regulares. Por esta razão as redes passaram a ser chamadas de redes complexas (Barabási, 2001; Newman, 2002). De maneira simplificada, pode-se dizer que as redes complexas são estruturas que não seguem um padrão regular nem uma estrutura totalmente aleatória.

Segundo Watts e Strogatz (1998), independentemente da sua natureza física, as redes complexas compartilham algumas propriedades estruturais. Neste contexto, uma rede complexa pode ser definida como um grafo que apresenta uma estrutura topográfica complexa, composta por um conjunto de nós intimamente ligados através de arestas (Albert; Barabási, 2002).

Considerando esta definição, Kivelä *et al.* (2014) afirmam que a maioria dos sistemas naturais possuem um conjunto de entidades que interagem umas com as outras, inclusive em subsistemas, com padrões complexos que podem abranger variados tipos de relacionamentos, relações temporais entre outros tipos interações complexas. Para Newman (2014), a população está inserida em inúmeras redes, que interagem entre si e com o meio. O entendimento destas redes não passa apenas pelo entendimento do sistema como um todo, de como as redes se interagem e como é gerado o comportamento do sistema em um nível global, indo muito além das análises isoladas. Como exemplo, tem-se o cérebro que é

formado por células nervosas e conectadas por axônios, a sociedade que é formada por pessoas ligadas por laços de amizade, as conexões rodoviárias que interligam cidades, os aeroportos que se conectam em rotas aéreas previamente definidas, dentre outros.

2.2 Redes reais

Existem inúmeros sistemas reais que podem ser representados através de redes. Estudos empíricos vem se tornando cada vez mais abrangentes, não apenas em relação ao que essas redes representam, mas também com relação a seu tamanho e complexidade de análise (Newman, 2002).

Segundo Newman (2014), as redes reais podem ser divididas em quatro grandes categorias sendo elas redes sociais, redes de informação, redes tecnológicas e redes biológicas. Newman (2002) define redes sociais como um conjunto de pessoas ou grupos de pessoas com algum padrão de contatos ou interações entre eles. Das disciplinas acadêmicas, as ciências sociais têm a mais longa história do substancial estudo quantitativo das redes do mundo real. Uma rede social é basicamente uma estrutura social composta de indivíduos ou grupos de indivíduos que representam os nós da rede, e que são conectados por um ou mais tipos específicos de interações. A redes sociais constituem um mapa de vínculos específicos entre os seus integrantes, como pode ser por exemplo, o vínculo de amizade. Os nós aos quais um indivíduo está assim conectado são então, os contatos sociais desse indivíduo considerando um tipo específico de interação (Newman, 2014; Wasserman; Faust, 1994). As redes sociais são associadas ao conceito mais contemporâneo, em função da disseminação da Internet e das redes sociais virtuais, no entanto, a análise da interação humana já despertava interesse de pesquisadores em meados do século XIX (Wasserman; Faust, 1994). Uma contribuição importante para o desenvolvimento deste campo foi dado no ano 1933, pelo sociólogo Jacob Moreno, quem explorava a sociometria de cada indivíduo analisando todas as suas interrelações.

Redes de informação, também conhecidas como redes de conhecimento, são obtidas a partir de bases de conhecimento formal, como as citações de artigos científicos, registros de patentes, a estruturas das linguagens entre outras. As redes de informação foram todas desenvolvidas pelo homem, e provavelmente, o exemplo mais conhecido seja a Internet (World Wide Web) (Newman, 2014). Contudo, existem algumas redes que poderiam ser consideradas redes de informação, mas que também têm aspectos sociais como, por exemplo, as redes de comunicações por e-mail e redes sociais como o Facebook ou Linkedin. Ainda, as citações em artigos científicos podem ser modeladas como um grafo direcionado, com viés

evolutivo, visto que publicações mais recentes citam as mais antigas, uma vez que o inverso não pode ocorrer. Em contra partida, a Internet se modela como um grafo direcionado com forte repetitividade, ou seja, presença de ciclos evolutivos no qual são adicionadas informações, uma vez que a evolução temporal permite a um site adicionar ligações a outros de construção posterior (Bruder *et al.*, 2004).

Biologia é talvez a área da ciência em que redes complexas podem ser empregadas mais facilmente, devido à importância das relações entre os diversos elementos estudados, que na maioria dos casos também está associada ao funcionamento do sistema biológico. Segundo Newman (2014), as redes são amplamente utilizadas em muitos ramos da biologia como uma representação conveniente de padrões de interação entre elementos biológicos apropriados. Biólogos moleculares, por exemplo, usam redes para representar os padrões de reações químicas entre substâncias químicas na célula, enquanto neurocientistas as usam para representar padrões de conexões entre células cerebrais (redes neurais), e ecologistas estudam as redes de interações entre espécies em ecossistemas, como predação ou cooperação.

As redes tecnológicas foram redes desenvolvidas pelo homem com a ideia de distribuir algum bem de consumo ou algum recurso (Newman, 2002). Desta forma, redes tecnológicas são geralmente redes físicas, em que seus objetos e relacionamentos são concretos. Uma importante rede tecnológica é a Internet, formada por roteadores e canais de comunicação, conhecidos como enlaces. Segundo Barthélemy (2011), redes tecnológicas são estruturas que transmitem energia, matéria ou informação de um ponto a outro. Essas redes controlam muitos aspectos da sociedade e influenciam muitos problemas modernos, tais como o contágio de doenças, congestionamentos, espraiamento urbano, estrutura de cidades, redes de transporte entre outros inúmeros exemplos. Nesta pesquisa será dá-se ênfase nas redes de transporte visto a aplicabilidade do presente trabalho.

Nos últimos anos notou-se um substancial aumento nas pesquisas relacionadas a redes de transporte dado sua importância no cotidiano da população. Pesquisas relacionadas a redes de transporte aéreo, rodoviário e ferroviário surgiram em função da facilidade da coleta de dados, embora a compilação dos dados possa ser trabalhosa. As redes de companhias aéreas podem ser reconstruídas a partir de mapas publicitários publicados, redes rodoviárias e ferroviárias projetadas em mapas. Um *software* de sistemas de informações geográficas (SIG) pode ser útil para agilizar a compilação de dados de transporte (Newman, 2014).

Na maioria das redes reais, os vértices representam localizações geográficas e as arestas e as rotas entre elas (Amaral *et al.* 2000; Sen *et al.* 2003). Por exemplo, em redes rodoviárias, os vértices geralmente representam interseções rodoviárias e as estradas as arestas da rede.

Um exemplo que pode ter analogia com o sistema de distribuição urbana de mercadorias é uma rede de energia, ou até mesmo redes de distribuição de água, gasodutos, dentre outras. A Figura 3 mostra, como exemplo, a rede europeia de distribuição de gás, construída a partir de dados da indústria. Nesta rede, as arestas são gasodutos e os vértices são suas interseções, incluindo instalações de bombeamento, comutação e armazenamento e refinarias.

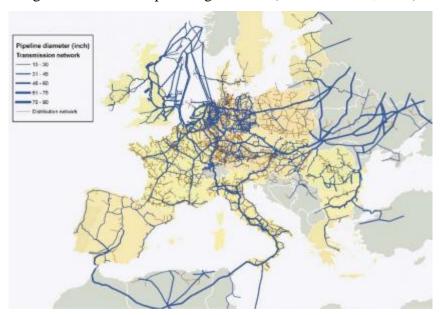
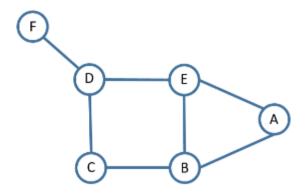


Figura 3 – Rede europeia de gasodutos (Carvalho et al., 2009).

2.3 Representação das Redes em Grafos e Matrizes


Há várias maneiras diferentes de representar uma rede. Na matemática, existe um ramo que estuda as relações entre elementos de um determinado conjunto denominado rede que faz o uso de estruturas denominadas grafos.

Grafos podem ser interpretados como representações abstratas que descrevem organização de diversos sistemas do mundo real tal como circuitos elétricos e de telecomunicações, rede biológicas, interações sociais, redes de transporte entre outras (Newman, 2014).

Segundo Metz *et al.* (2007), um grafo simples, G, é um grafo G = (V, E), em que E é um conjunto de pares distintos não ordenados de elementos distintos de V. Os elementos de V são chamados de vértices do grafo, e os elementos E são as arestas do grafo.

A representação gráfica da Figura 4 mostra os vértices representados por círculos e as arestas como linhas conectando os vértices. No entanto, esta representação é bem diferente da estrutura abstrata utilizada na computação e matemática. Por exemplo, um grafo simples pode ser representado matematicamente como um conjunto de vértices $V = \{A, B, C, D, E, F\}$ e um conjunto de arestas $E = \{\{A, B\}, \{A, E\}, \{B, C\}, \{B, E\}, \{C, D\}, \{D, E\}, \{D, F\}\}$.

Figura 4 – Grafo genérico com 6 vértices e 7 arestas.

A representação em grafos pode variar consideravelmente de acordo com o contexto e sua aplicação. As arestas podem ter ou não uma direção definida, ou seja, quando as arestas tem um sentido, os grafos são chamados direcionados e está direção pode ser representada por uma seta indicando o sentido. Em contrapartida, caso a aresta não tenha um sentido definido, o grafo é não direcionado, o que significa que o caminho da aresta entre os vértices pode ser feito em qualquer um dos sentidos. Desta forma, quando uma aresta conecta dois vértices, esses são denominados incidentes à aresta e a quantidade de arestas ligadas a um vértice é denominada valência. Ainda neste mesmo contexto, observa-se também um termo chamado adjacência, em que dois vértices são considerados adjacentes se existe uma aresta que liga os dois. Além disso, podendo haver também uma terceira situação que é quando um vértice tem uma aresta ligando-o a si próprio (*loop*).

A matriz de adjacência guarda informações sobre todas as relações de adjacência de um grafo. Um grafo G = (V, E), com n vértices e conjunto de vértices $V = (v_1, ..., v_n)$, pode ser representado por uma matriz de adjacência associada A(G). Os elementos de A dependem das propriedades do grafo que se deseja representar e guardam basicamente as informações de adjacência entre os vértices.

No caso de um grafo não direcionado, simples e sem pesos nas arestas, então a matriz guarda apenas o valor 1 caso haja adjacência entre os vértices, isto é, $a_{ij} =$ $(1, se v_i e v_j são adjacentes)$

(0, caso contrário

Para um grafo direcionado, A(G) é uma matriz binária e simétrica, isto é, $a_{ij} = a_{ij}$ para todo $i, j, 1 \le i \le n, 1 \le j \le n$, cujo traço é zero. A Figura 5 ilustra um grafo de 5 vértices com 6 arestas e a sua respectiva matriz de adjacência A(G).

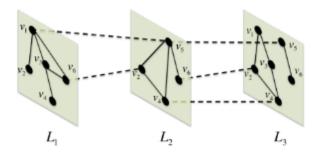
Figura 5 – Exemplo de grafo e matriz adjacência.

2.4 Conclusão do capítulo

No presente capítulo foram apresentados conceitos relacionados a redes complexas. Os conceitos básicos de redes foram abordados desde a sua concepção até a sua evolução histórica. Dentre os conceitos aplicados, destacam-se:

- algumas aplicações em redes reais que englobam redes sociais, biológicas, comunicação e tecnológicas;
- conceito básicos para entendimentos de grafos, desde a sua configuração base até a criação de matriz adjacência, utilizados para o cálculo dos dissimilaridades e diversidades nas redes.

3 REDES MULTICAMADAS


Segundo Boccaletti *et al.* (2014), a teoria das redes explicam com sucesso a interação e a dinâmica de uma grande variedade de sistemas complexos. Entretanto, grande parte das redes são tratadas de maneira unitária, ou seja, são negligenciadas informações relativas a tempo ou até mesmo ao contexto nos quais a rede estava inserida, podendo produzir assim interpretações que não condizem com a realidade. Recentemente, alguns pesquisadores concentraram seus estudos para as diferentes propriedades e sistemas do mundo real começando assim a considerar a natureza variável e temporal, visto que a maioria dos sistemas interagem entre si, com variados tipos de relações, ou seja, compostos por subsistemas com redes interligadas (Kivelä *et al.*, 2014).

Segundo Mollgaard *et al.* (2016), redes formadas a partir de interações simultâneas em diferentes camadas são chamadas de multicamadas (em inglês, *multilayer networks*), sendo representados por grafos com várias camadas de conexões. As redes multicamadas agrupam múltiplos canais de conectividade, estabelecendo assim um ambiente para descrever sistemas interligados através de variados tipos de conexões. Cada canal (relação, atividade ou categoria) pode ser representado por uma camada e o mesmo nó pode ter diferentes tipos de interação, ou seja, diferentes conjuntos de vizinhos em cada camada (Zanin *et al.*, 2016).

Segundo Boccaletti *et al.* (2014), uma rede multicamada ou *multilayer*, \mathcal{M} , é definida como um par $\mathcal{M} = (\mathcal{G}, \mathcal{C})$ onde \mathcal{G} denota o conjunto de grafos (direcionados ou não direcionados, ponderados ou não ponderados) que representam as camadas de \mathcal{M} , isto é, $\mathcal{G} = \{G_{\alpha}; \alpha \in \{1, ..., M\}\}$. Assim, cada camada α é expressa como um grafo $G_{\alpha} = (V_{\alpha}, E_{\alpha})$, onde $V_{\alpha} = \{v_{\alpha}^{\alpha}, ..., v_{|V_{\alpha}|}^{\alpha}\}$ é o conjunto de nós de G_{α} e E_{α} são as conexões *intralayers* de \mathcal{M} referentes a G_{α} . O conjunto \mathcal{C} abrange as interconexões entre nós de camadas diferentes, G_{α} e G_{β} , ou seja, $C = \{E_{\alpha\beta} \subseteq |V_{\alpha}|x|V_{\beta}|; \alpha, \beta \in \{1, ..., M\}, \alpha \neq \beta\}$, em que $E_{\alpha\beta}(\alpha \neq \beta)$ caracteriza as conexões *interlayers* de \mathcal{M} .

Em uma rede multicamadas, um mesmo nó pode figurar em várias camadas, conectando-se com outros dependendo da rede representada. Como exemplo, na Figura 6, os pares $(v_4, l_2), (v_4, l_3) e (v_5, l_2)$ identificam nós em diferentes camadas. Em particular, o nó v_4 presente nas camadas $l_2 e l_3$ e o nó v_5 presente na camada l_2 . Na camada l_2 , o vértices v_4, v_5 podem ser representados por $((v_4, l_2), (v_5, l_2))$ para indicar que se referiu à camada l_2 . Além disso, pode-se ter arestas entre camadas, por exemplo, $((v_4, l_2), (v_4, l_3))$.

Figura 6 – Exemplo de redes multicamadas.

Segundo Salehi *et al.* (2015), uma rede multicamadas é uma estrutura de dados feita de várias camadas, em que cada camada é uma rede simples compostas por grafos. Kivela *et al.* (2014) ressaltam a importância deste tipo de rede visto que através de sua representação e análise é possível obter representações mais realísticas, interpretar fenômenos e interações que as redes simples não conseguem capturar.

3.1 Redes Multiplex

Kivela *et al.* (2014) relatam que redes *multiplex* podem ser classificadas como uma derivação das redes *multilayer*. Segundo Kanawati (2015), estas podem ser definidas pelo trio G = (V, E, C), em que V é um conjunto de nós, $E = \{E_1, ... E_\alpha\}$ é o conjunto de α tipos de arestas entre os nós V, em que $E_k = \{(v_i, v_j): i \neq j, v_i, v_j \in V\}$, e C é um conjunto de pares de *links* que representam os *links* entre um nó e ele mesmo através de diferentes camadas ou *layers*. Observa-se que $C = \{(v, v, l, k): v \in V, l, k \in [1, \alpha], l \neq k\}$ em que (v, v, l, k) denota que o link com origem no nó v no layer l para o nó v no *layer* k.

O conceito de redes *multiplex* foi introduzido com o objetivo de fornecer um modelo expressivo para modelar redes complexas do mundo real. Uma rede *multiplex* é definida, por Kanawati (2015) e Kivelä *et al.* (2014), como um grafo multicamadas, em que cada camada contém o mesmo conjunto de nós, mas interconectados por diferentes tipos de *links*. Em outras palavras, cada camada da rede *multiplex* é associada uma rede *monolayer* que representa um determinado tipo de ligação. Assim, diferentes camadas configuram os vários tipos de interações a serem analisadas. De acordo com Lee *et al.* (2015), uma rede *multiplex* é formada por um conjunto de redes *monolayer* que representam um determinado tipo de ligação. Segundo Nicosia *et al.* (2013), uma rede *multiplex* é um conjunto de *N* nós que estão conectados uns aos outros por meio de arestas pertencentes a *M* camadas. Nós representam cada classe de arestas como uma camada separada, e assume-se que um nó *i* do multiplex consiste em *M* réplicas, uma para cada camada.

Segundo Dias (2018), diferentes camadas configuram as várias conexões a serem analisadas em um estudo, em que uma matriz de adjacência pode ser extraída em cada camada G_{α} , a qual é definida como $A^{(\alpha)} = \left[\alpha_{ij}^{\alpha}\right] \in \mathbb{R}^{|V_{\alpha}|x|V_{\alpha}|}$, sendo:

$$\alpha_{ij}^{\alpha} = \begin{cases} 1 \ se \left(v_i^{\alpha}, v_j^{\alpha} \right) \in E_{\alpha}, \text{ com } 1 \leq i, j \leq |V_{\alpha}| \text{ e } 1 \leq \alpha \leq M \\ 0 \ caso \ contrário \end{cases}$$

Em um contexto mais contemporâneo, traduzindo o conceito de redes *multiplex*, toma-se como exemplo um caso das ciências sociais, no qual um mesmo usuário pode optar por se inscrever em duas ou mais redes sociais *online* e construir diferentes relacionamentos sociais com os mesmos usuários em cada plataforma social (por exemplo, *Linkedin* para a rede de contatos profissionais, *Twitter* para a rede de amigos, etc.) (Salehi *et al.*, 2015). Outro exemplo é representado pelas redes de transporte em uma cidade: a rede de transporte público por ônibus (camada 1) é diferente da rede de transporte metroviário (camada 2), contudo as pessoas fazem uso da combinação de ambas as redes para se deslocar de um ponto para outro dentro do cidade, utilizando-se de pontos de transbordo em comum (De Domenico *et al.*, 2014).

3.2 Aplicações do conceito de rede *multiplex* em Transporte

Conforme já apresentado anteriormente, as aplicações de redes *multiplex* em Transportes ainda são escassas, estão focados no movimento de navios em portos (Kaluza *et al.*, 2010), redes de transporte urbano (Aleta *et al.*, 2017), aéreo e ferroviário (Halu *et al.*, 2014) e metroviário (Strano *et al.*, 2015). Estes estudos estão relatados a seguir.

Kaluza et al. (2010) analisaram o movimento de navios em portos utilizando redes multiplex. Neste estudo, a rede multiplex é composta pelos portos (nós) e a três classes mais comuns de navios de carga (navios porta-contêineres, navios graneleiros secos e navios-tanque de petróleo) que são as camadas. A compreensão dos movimentos de cada tipo de navio foi motivada pelo problema da disseminação de espécies e micro-organismos que não fazem parte do ambiente que os navios atracam e desatracam. Os navios graneleiros e navios petroleiros utilizam água de lastro para manter a estabilidade do veículo após a descarga da mercadoria que estava sendo transportada. Em caso de abastecimento, esta água de lastro é descartada no oceano, podendo conter esgoto e materiais tóxicos, além de espécies animais e vegetais endêmicas não nativas, que, por não terem predadores naturais, podem se reproduzir rapidamente e competir com espécies nativas, além de bacilos ou outras formas de organismos patogênicos, que também podem ser carregados de uma região para outra junto

com a água de lastro. Com o mapeamento do padrão dos movimentos dos navios, os autores identificaram um desequilíbrio em determinados portos em função descarte da água de lastro.

Aleta et al. (2017) analisaram redes de transporte urbano estruturados em redes multiplex. Os sistemas públicos de mobilidade urbana são compostos por vários modos de transporte conectados entre si. A maioria dos estudos em mobilidade urbana e planejamento muitas vezes ignora a natureza multicamadas dos sistemas de transporte, considerando apenas as versões agregadas desse cenário complexo. Os autores apresentam um modelo para a representação do sistema de transporte de uma cidade como uma rede multiplex. A rede multiplex em questão foi analisada em duas perspectivas distintas. Na primeira assumiu-se que cada linha de cada modo de transporte seria uma camada e uma segunda na qual todas as linhas de um mesmo modo de transporte seriam agrupadas formando uma só camada, ou seja, cada camada da rede seria representada por um modo de transporte. Neste trabalho foram apresentadas estruturas de interconexão de nove cidades diferentes na Europa, destacando suas vulnerabilidades e possíveis melhorias. Especificamente para a cidade de Zaragoza, foram considerados também dados relativos a horário de serviço e os tempos de espera, que permitiu criar um modelo simples, mas realista para a mobilidade urbana capaz de reproduzir fatos reais e testar melhorias na rede.

Halu *et al.* (2014) utilizaram estruturas multicamadas para modelar as redes de transporte aéreo e ferroviário na Índia. O sistemas de transporte são as camada e as estações são os nós da rede. Pares de nós pertencentes a diferentes camadas, isto é, pares de estações de aeroportos, estão ligados sempre que existe um acesso rodoviário direto entre ambos (consideram-se pares estações ferroviárias e aeroportos que estejam próximos e interligados por uma rodovia). Vale ressaltar que ambas as redes têm uma natureza muito diferente. Embora a rede aeroportuária seja pequena (com 78 nós) e apresente uma estrutura com baixa conectividade e livres de escala, a ferrovia é consideravelmente maior (6.769 estações) e possui uma topologia fortemente limitada pela geografia, implicando em uma distribuição de graus limitada e uma topologia combinatória. No entanto, os autores concluíram que mesmo com a alta heterogeneidade da rede consegue-se um bom desempenho da rede como um todo em termos de navegabilidade.

Strano *et al.* (2015) relatam que a maioria das grandes cidades é composta por mais de um sistema de transporte. Estes diferentes modos de transporte têm sido estudados por anos de maneira isolada. Os autores avaliaram a importância do entendimento dos impactos nos sistemas de transporte urbano caso houvesse uma combinação entre os diferentes modos de

transporte que compunham o sistema de transporte. Os autores apresentam uma análise empírica desta combinação entre a rede viária e de metrô para Londres e Nova York. A análise da distribuição de centralidade entre setores mostra que a rede metroviária opera como uma força descentralizadora, podendo gerar congestionamentos em locais localizados no final de linhas subterrâneas. Os autores concluíram que aumentar a velocidade do metrô nem sempre é benéfico e pode levar a distribuições espaciais desiguais indesejadas de acessibilidade. Para Londres, existe uma velocidade ideal de metrô em termos de congestionamento global, fato não observado em Nova York. Esses resultados mostram que é importante considerar os aspectos da rede multicamadas e multimodais dos sistemas de transporte, a fim de compreender o fluxo dos usuários dos sistemas de transporte e evitar possíveis efeitos colaterais negativos das decisões de planejamento urbano.

Estas aplicações demonstram a importância da utilização de redes multicamadas na Engenharia de Transportes. Uma forma de medir a eficiência e consequentemente a usabilidade dos nós é utilizando uma medida de diversidade proposta por Carpi *et al.* (2018), que utiliza o conceito de diversidade relacionado à variedade de padrões de conectividade nas diferentes camadas de um sistema multiplex. Esta medida de diversidade é apresentada em detalhe a seguir.

3.3 Medidas de diversidade em redes

As medidas de diversidade, propostas inicialmente por Weitzman (1992) e reformuladas por Bossert *et al.* (2001), são de grande relevância, visto que podem identificar elementos estratégicos ao sistema para o perfeito equilíbrio e funcionalidade do mesmo.

Este conceito caracteriza a medição da diversidade com base em conjuntos considerando uma função de dissimilaridade, que pode ser também definida como distância. A diversidade é um conceito que é frequentemente usado em contextos científicos e não científicos, com a ideia principal de representar a variedade de todas as diferentes formas de um sistema (Carpi *et al.*, 2018; Bossert *et al.*, 2001). No contexto de redes *multiplex*, diversidade refere-se à variedade de configurações de conectividade que os elementos que constituem a rede (ou seja, os nós e as camadas) possuem.

Carpi *et al.* (2018) propõem um método para calcular diversidade em redes *multiplex* que quantificam a diversidade dos padrões de conexões de redes complexas, baseado no cálculo de dissimilaridades de camadas e de nós, e nos métodos propostos por Weitzman (1992) e Bossert et al. (2001).

Neste contexto, surge a questão: "Por que é tão importante medir a diversidade de um sistema *multiplex*?" As respostas diretas são identificar e evitar informações redundantes (preservando apenas as informações necessárias para caracterizar adequadamente o sistema em estudo) e garantir a estabilidade do sistema, protegendo os elementos essenciais para manter a funcionalidade do sistema. Pode-se considerar, por exemplo, o sistema de transporte de uma cidade, representado por uma rede *multiplex* com as estações de metrô sendo os nós, e as diferentes linhas que os conectam as estações como as camadas (Carpi *et al.*, 2018). A medida de diversidade identifica a estações críticas (com mais ou menos demanda) do sistema de transporte analisado, ou então cria respaldo para uma análise de inclusão ou a retirada de uma estaçõe e as avaliações que estas alterações poderiam trazer para o sistema.

Carpi et al. (2018) propõem medidas para quantificar a diversidade em dois níveis:

- diversidade local que se refere à diversidade das configurações de conectividade que um nó possui nas diferentes camadas (*Ui*);
- diversidade global que se refere a quão diferente as camadas são, em relação às configurações de conectividade (*U*).

As medidas de diversidade de um sistema se apoiam em medidas de dissimilaridades entre entidades (nós e camadas) para comparar diferenças estruturais de conectividade na rede *multiplex*, podendo também ser traduzido em distâncias. Assim, no presente trabalho, a diversidade está relacionada ao fator de dissimilaridade, ou seja, o conjunto mais diverso será aquele que apresentar maior diferença entre membros observando que as diferenças são baseadas em configurações de conexões. Uma definição de diversidade útil requer uma medida apropriada das diferenças nos caminhos da conectividade.

Para a obtenção da diversidade do sistema deve-se inicialmente, calcular a distância entre os nós, ND (*node difference*, em inglês), e a distância entre as camadas, LD (*layer difference*, em inglês). ND quantifica as diferenças dos caminhos de conectividade do nó i nas camadas \bar{p} e \bar{q} , dado por $D_i(\bar{p},\bar{q})$. LD quantifica a diferença entre os caminhos de conectividade nas camadas \bar{p} e \bar{q} .

A primeira medida definida como de dissimilaridade de nó (ND) quantifica as diferenças nos padrões de conectividade de cada nó em cada uma das camadas da rede. As métricas de dissimilaridade são capazes de identificar e quantificar diferenças topológicas nas camadas, ou seja, o papel de cada nó na rede depende de como ele está conectado em cada uma das camadas. A ideia principal para medir a dissimilaridade de dois grafos é associar a cada

estrutura um conjunto de funções de distribuição de probabilidade (*Probability Distribution Functions -PDFs*), representando todas as distâncias de conectividade do nó e compará-las com as métricas padrões teóricas (Schieber *et al.* 2017). Assim, a medida *ND* (*node dissimilarity*) considera dois conjuntos de vetores, no qual os elementos apresentam-se como função de distribuição de probabilidade (*probability distribution functions – PDFs*). O primeiro componente é a distribuição nó distância, sendo conhecida também como *NDD* (*node distance distribution*); já a segunda é matriz de transição *TM* (*Transition Matriz*).

A NDD é utilizada para medir a heterogeneidade de um grafo em relação as distâncias de conectividade, ou seja, para cada nó i e para cada distância d, existe uma $P_i(d)$ associada que é interpretada como fração de nós à distância d (menor caminho) de um nó i . NDDs avaliam pontualmente as conexões de cada um dos nós (i) da rede por meio de distâncias.

De maneira análoga a representação da NDD, cada coluna da TM representa um nó i da rede. A Matriz de Transição é determinada pela matriz de adjacência, em que os elementos de cada coluna são divididos pelo grau do respectivo nó e é a probabilidade de um nó i qualquer ser alcançado. A construção da TM apoia-se no conceito de $random\ walker$, utilizado para determinar a probabilidade de, dado um grafo qualquer, se alcançar o nó A a partir do nó B em N passos.

Salienta-se que a ordem das matrizes NDDs e TM são determinadas por |V|x|V|, tendo uma relação direta com a rede que deverá ser analisada. Em complemento, toma-se como regra que a soma de qualquer distribuição de probabilidades (PDFs) dos vetores em questão NDD e TM deve ser igual a 1.

A comparação entre múltiplas redes distintas pode ser encontrada calculando as diferenças entre os vetores através da medida *ND* (*node distance*), que neste trabalho será tratada como Di e é formulada conforme Equação 1.

$$D_i(p,q) = \frac{\sqrt{JD(NDD_i^p, NDD_i^q)} + \sqrt{JD(T_i^p, T_i^q)}}{2}$$
 Equação 1

em que:

p e q representam duas redes quaisquer distintas,

i é o nó que está sendo analisado (Schieber et al., 2017).

JD é a divergência de Jensen-Shannon, que mede a dissimilaridade entre PDFs.

Do cálculo de D_i(p, q), tem-se as seguintes possibilidades:

- $D_i(p,q) = 0$ indica que, não existe diferença de conexão do nó i entre as redes p e q, pois a distribuição de probabilidade (PDFs) das camadas são idênticas;
- $D_i(p,q) = 1$ indica uma situação inversa, visto que as diferenças de i entre p e q são máximas, ou seja, o nó está desconectado dos demais nós em uma das redes em questão e conectado por meio de um caminho a todos os outros nós na outra rede e;
- $0 < D_i(p,q) < 1$ pode ser interpretados como níveis de similaridade dos nós, ou seja, quanto mais próximos de 0 os resultados de $D_i(p,q)$, mais similares eles são e quanto mais próximos de 1 mais diferentes os padrões de conexão.

A dissimilaridade das camadas ou LD (layer distance) quantifica as diferenças entre padrões de conectividade das camadas p e q, isto é, a distância entre camadas, representado neste trabalho como a variável dissimilaridade global pode ser calculada através da média de $D_i(p,q)$ de todos os nós, conforme Equação 2.

$$D(p,q) = \langle D_i(p,q) \rangle_i$$
 Equação 2

Por se tratar de uma variável global que analisa toda a rede, entende-se que D(p,q) representa a dissimilaridade global entre as redes analisadas, sendo a segunda medida de dissimilaridade estrutural a ser empregada em redes *multiplex*. Para tanto, tem-se as seguintes interpretações:

- D(p,q) = 0 indica que as redes p e q apresentam padrões de conectividade idênticos, ou seja, apresentam a mesma matriz de adjacência;
- D(p,q) = 1 indica que uma das camadas está totalmente conectada, enquanto que a outra está totalmente desconectada, sugerindo uma diferença total entre estas camadas;
- $0 < D_i(p,q) > 1$ pode ser interpretados como níveis de similaridade das camadas.

O modelo, proposto por Weitzman (1992) e reformulado por Bossert *et al.* (2001), caracteriza a medição da diversidade como uma função de medida de dissimilaridade que pode também ser definida como distância conforme definido anteriormente segundo Carpi *et al.* (2018).

Os conceitos de diversidade até então apresentados serão traduzidos para as redes *multiplex*, que é o conceito chave deste trabalho. Neste contexto, o conjunto universal será considerado como \tilde{S} e incluirá as entidades da redes, que são designados como o conjunto de todos os nós ou o conjunto de todas as camadas. Será assumido que $S = \{s_1, ..., s_{|S|}\}$ e $S \subset \tilde{S}$. No caso em que \tilde{S} denota o conjunto de todos os nós ou o conjunto de todas as camadas na rede |S| = M camadas, sendo cada camada composta por |V| nós, sendo |V| = N. Assume-se também que

as distâncias entre todos os elementos de S possam ser calculadas e que exista um elemento \overline{g} , sendo $\overline{g} \notin S$, isto é, que não pertence ao sistema considerado. Então, a distância entre \overline{g} e o conjunto S será dado como a menor distância dentre as encontradas para \overline{g} e cada um dos elementos de S, como:

$$d(\overline{g}, S) = \min_{\overline{s}_i \in S} d(\overline{g}, \overline{s}_i)$$
 Equação 3

em que \overline{s}_i denota os elementos de S. As distâncias $d(\overline{g}, \overline{s}_i)$ são medidas conforme Equação 1 e Equação 2. A Equação 1 é usada quando S envolve o conjunto de todos os nós da rede (ND). Já a Equação 2, que corresponde a dissimilaridade entre camadas, é empregada obviamente, quando \tilde{S} refere-se as camadas da rede (LD).

Seguindo o processo recursivo de ordenação, a função de diversidade $U: \tilde{S} \to \mathbb{R}_+$ é definida como $U(s) = \max_{\overline{s}_i \in S} \{U(S - \{\overline{s}_i\}\}) + d(\overline{s}_i, S \setminus \overline{s}_i)\}$ para todo $S \in \tilde{S}$ com $|S| \ge 2$. Quando |S| = 1, a diversidade será U(s) = 0, para todo $S \in \tilde{S}$.

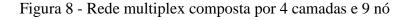
É conveniente salientar que a diversidade U do sistema analisado diminui quando um elemento é removido. Em face disso, considerando um determinado sistema $S \cup \overline{g}$, a retirada de \overline{g} do mesmo diminuirá a diversidade em pelo menos $d(\overline{g}, S)$ do valor de $U(S \cup \overline{g})$. Neste sentido, $U(S \cup \overline{g}) \ge U(S) + d(\overline{g}, S)$.

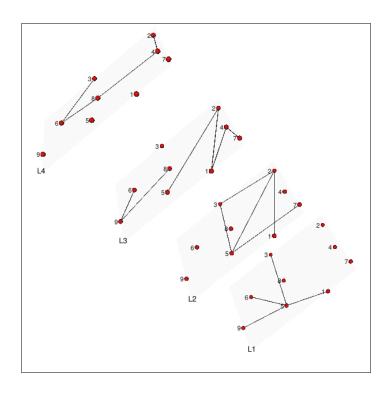
Através de um método baseado em uma ordem lexicográfica de distância, um conjunto de ordem de diversidade pode ser obtido $O(S) = \{\overline{S_1}, \overline{S_2}, ..., \overline{S_{|S|}}\}$, que indica os elementos na ordem de sua contribuição à diversidade do sistema. Segundo Rodrigues e Almeida (2017), ordem lexicográfica consiste em uma estrutura de ordem natural do produto cartesiano de dois conjuntos ordenados. A ordem lexicográfica sob o produto cartesiano BxC é definida especificando que um par ordenado é menor do que o outro. Assim, ao se comparar dois pares ordenados, nos quais o primeiro termo se refere ao conjunto B e o segundo termo ao conjunto C, a ordenação é estruturada de forma que o primeiro termo do primeiro par seja menor do que o primeiro termo do segundo, ou que, o segundo termo do primeiro par seja menor do que o segundo termo do segundo dado que as primeiras entradas são iguais.

Quando todos os elementos tiverem o mesmo valor de diversidade, é possível ter uma "ordem de diversidade" através do cálculo de um método baseado em uma distância lexicográfica: $O(S) = \{\overline{S_1}, \overline{S_2}, ..., \overline{S_{|S|}}\}$, que indica os elementos na ordem de contribuição à diversidade ao conjunto (Bossert *et al.* 2001).

Passo 1 Passo 2 Passo 3 $D(a,S_1)=\{0, 0.214, 0.697, 0.786\}$ $D(a,S_2)=\{0, 0.697, 0.786\}$ $D(a,S_3)=\{0, 0.786\}$ Camadas={a, c, b, d} Camadas={a, b, d} Camadas={a, d} Camada A $\begin{array}{c} D(a,S_1) = \{0,\ 0.580,\ 0.692,\ 0.697\} \\ Camadas = \{b,\ c,\ d,\ a\} \end{array} \begin{array}{c} D(a,S_2) = \{0,\ 0.692,\ 0.697\} \\ Camadas = \{b,\ c,\ d,\ a\} \end{array}$ Estrutura Multiplex (S) $D(a,S_1)=\{0, 0.214, 0.580, 0.804\}$ Camadas={c, a, b, d} $D(a,S_1)=\{0, 0.692, 0.786, 0.804\}$ $D(a,S_2)=\{0, 0.692, 0.786\}$ $D(a,S_3)=\{0, 0.786\}$ Camadas={d, b, a, c} Camadas={d, b, a, c} Camadas={d, a} $O(S)=\{c\}$ $O(S)=\{c, b\}$ $O(S)=\{c, b, d, a\}$ $O_D(S)=\{0.214\}$ $O_D(S)=\{0.214, 0.692\}$ $O_D(S)=\{0.214, 0.692, 0.786, 0\}$ U= 0.214+0.692 U = 0.214U= 0.214+0.692+0.786

Figura 7 – Exemplo de cálculo de diversidade


A Figura 7 é uma adaptação de Carpi *et al.* (2019) e apresenta o cálculo da diversidade de uma estrutura de 4 camadas. As camadas tem os seguintes valores de dissimilaridade (LD):


	A	В	C	D
A	0			
В	0,697	0		
C	0,214	0,580	0	
D	0,786	0,692	0,804	0

Com base nas dissimilaridades, calculou-se então a diversidade do sistema aplicando a equação U(S) recursivamente, com as camadas S_i ordenadas de acordo com a distância ao conjunto $S - S_i$. Como primeira etapa em S = a; b; c; d as camadas a e c apresentam o menor valor de LD = 0,214, e c é a camada que menos contribui para a diversidade de S, já que está mais perto das camadas restantes. Logo a primeira recursão é $U(S) = U(S_1) + 0.214$ onde $S_1 = S - c$. Como uma segunda etapa tem-se $S_1 = a$; b; d, as camadas b e d apresentam o menor valor de LD = 0,692, e b é a camadas que menos contribui para a para a diversidade do S_2 . Assim sendo $U(S_1) = U(S_2) + 0,692$ onde $S_2 = S_1 - b$. Em uma terceira etapa o valor de LD do conjunto $S_2 = a$; d é D(a; d) = 0,786. Sendo assim a diversidade de um sistema com cardinalidade 0 é 0, $U(S_2) = D(a$; d) e U(S) = 0,214 + 0,692 + 0,786 = 1,692.

Afim de reforçar o modelo e o método do cálculo da diversidade, adaptou-se de Dias (2018), um exemplo de um conjunto S formado pelas camadas L_1, L_2, L_3 e L_4 , as dissimilaridades entre as mesmas serão medidas através da Equação 2, e tiveram os seguintes resultados

 $d(L_1, L_2) = 0.518$, $d(L_1, L_3) = 0.723$, $d(L_1, L_4) = 0.673$, $d(L_2, L_3) = 0.619$, $d(L_2, L_4) = 0.675$ e $d(L_3, L_4) = 0.690$.

Por se tratar de 4 camadas (Figura 8), serão realizadas 4 iterações. Na primeira iteração seguindo o procedimento $S = \{L_1, L_2, L_3, L_4\}$ temos $\overline{S_1} = \{L_1, L_2, L_3, L_4\}$. Então para $d(L_1, L_1) \leq d(L_1, L_2) \leq d(L_1, L_4) \leq d(L_1, L_3)$, levando $\sigma_{L_1}^{\overline{S_1}} = \{L_1, L_2, L_3, L_4\}$ e $\delta_{L_1}(\overline{S_1}) = \{0, 0.518, 0.673, 0.723\}$. Para L_2 : $d(L_2, L_2) \leq d(L_2, L_1) \leq d(L_2, L_3) \leq d(L_2, L_4)$, $\sigma_{L_2}^{\overline{S_1}} = \{L_2, L_1, L_3, L_4\}$ e $\delta_{L_2}(\overline{S_1}) = \{0, 0.518, 0.619, 0.675\}$. Já para L_3 : $d(L_3, L_3) \leq d(L_3, L_4) \leq d(L_3, L_4)$, $\sigma_{L_3}^{\overline{S_1}} = \{L_3, L_2, L_4, L_1\}$ e $\delta_{L_3}(\overline{S_1}) = \{0, 0.619, 0.690, 0.723\}$. Enfim para L_4 : $d(L_4, L_4) \leq d(L_4, L_1) \leq d(L_4, L_2) \leq d(L_4, L_3)$, $\sigma_{L_4}^{\overline{S_1}} = \{L_4, L_1, L_2, L_3\}$ e $\delta_{L_4}(\overline{S_1}) = \{0, 0.673, 0.675, 0.690\}$. Assim sendo, neste primeiro estagio D(s) = (0.518) e $O(s) = \{L_2\}$. Para a segunda interação seguindo procedimentos idênticos $\overline{S_2} = \{L_1, L_3, L_4\}$ e $\sigma_{L_1}^{\overline{S_2}} = \{L_1, L_4, L_3\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_1, L_3\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_1, L_4, L_3\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_1, L_3\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_4, L_4, L_4\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_4, L_4, L_4\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_4, L_4, L_4\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_4, L_4, L_4, L_4\}$ e $\sigma_{L_4}^{\overline{S_2}} = \{L_4, L_4, L_4\}$ e dermina para L_4 e $\sigma_{L_4}^{\overline{S_3}} = \{L_4, L_4, L_4\}$ e dermina para L_4 e $\sigma_{L_4}^{\overline{S_3}} = \{L_4, L_4, L_4\}$ e dermina para L_4 e $\sigma_{L_4}^{\overline{S_3}} = \{L_4, L_4, L_4\}$ e dermina para L_4 e $\sigma_{L_4}^{\overline{S_3}} = \{L_4, L_4, L_4\}$ e dermina para L_4 e $\sigma_{L_4}^{\overline{S_3}} = \{L_4, L_4, L_4\}$ e $\sigma_{L_4}^{\overline{S_3}} = \{L_4, L_4, L_4\}$

 $L_1=\frac{\overline{S_3}}{L}$ L_3 assume-se $\overline{S_3}=L_1$ ou $\overline{S_3}=L_3$. Se $\overline{S_3}=L_1$ tem-se $\overline{S_4}=\{L_3\},\ \sigma_{L_3}^{\overline{S_4}}=\{L_3\}$ e $\delta_{L_3}(\overline{S_4})=\{0\}$ e $\overline{S_4}=L_3$; caso contrário $\overline{S_4}=\{L_1\}$ com $\sigma_{L_1}^{\overline{S_4}}=\{L_1\}$ e $\delta_{L_1}(\overline{S_4})=\{0\}$ e $\overline{S_4}=L_1$. Como consequência D(s)=(0.518,0.673,0.723,0) e $O(s)=\{L_2,L_4,L_1,L_3\}$ ou $O(s)=\{L_2,L_4,L_3,L_1\}$ admitindo que L_1 e L_3 contribuem igualmente para a diversidade da rede. Sabe-se que L_4 é o antepenúltimo elemento eliminado e analisando $d(L_1,L_4)=0.673$ e $d(L_3,L_4)=0.690$, o conjunto de ordenação da diversidade será $O(s)=\{L_2,L_4,L_1,L_3\}$, pois L_1 é o mais próximo de L_4 .

Através dessa resolução, observa-se através do O(s) que a primeira camada a ser eliminada do sistema, L_2 , é a que se apresenta com a maior semelhança entre as demais camadas do conjunto, sendo assim a que menos contribui com a diversidade da rede. De maneira oposta a L_2 , a última camada eliminada, L_3 , reflete a maior participação no alcance da diversidade devido à maior distância encontrada na rede. Para finalizar, a diversidade total da rede multiplex será U(S) = 0.518 + 0.673 + 0.723 + 0 = 1.914. Como mencionado, o valor de U(S) para $S = \{L_1, L_2, L_3, L_4\}$ será reduzido se alguma camada da rede for retirada do estudo. Quer dizer, caso se retire L_4 , para o novo sistema a ser avaliado $S - \{L_4\} = \{L_1, L_2, L_3\}$, $U(S - \{L_4\}) = 1.914 - d(L_4, S) = 1.914 - 0.673 = 1.241$.

3.4 Conclusão do capítulo

As redes multicamadas se apresentam como um possível instrumento para uma análise na dinâmica da distribuição urbana nas cidades. Segundo De Domenico *et al.* (2014), a inclusão de camadas no modelo o torna cada vez mais rica oferecendo a possibilidade de analisar redes ainda mais complexas de maneira mais assertiva e com um maior número de detalhes.

Este capítulo conceituou redes multiplex como redes multicamadas, apresentando a literatura pertinente ao tema relacionado à Engenharia de Transportes. A aplicação de redes multicamadas para o planejamento do transporte urbano de mercadorias como ação mitigadora das externalidades oriundas desta atividade pode ser empregada, vista a bemsucedida aplicação para algumas situações do mundo real tal como: intermodalidade no transporte público, transporte aéreo, distribuição de redes de energia elétrica entre outras situações relatadas neste capítulo. Não foram identificados estudos com aplicação para o transporte de carga urbana.

Na aplicação proposta nesta dissertação, o sistema de distribuição de mercadorias é composto por áreas de carga e descarga localizadas na via pública que atendem estabelecimentos

comerciais. A análise da diversidade permitirá identificar áreas com baixa utilização e aquelas que são vitais para o bom funcionamento da rede de distribuição, além de identificar determinados setores do comércio que são melhores atendidos em função da distância entre eles e a localização destas áreas. A perda de diversidade provavelmente causará o uso excessivo de algumas áreas, podendo gerar atrasos e até o colapso do sistema de distribuição de mercadorias em áreas urbanas. O próximo capítulo apresenta o método de pesquisa para aplicar medidas de diversidade no referido sistema.

4 MÉTODO DE PESQUISA

Este capítulo apresenta o método de pesquisa utilizado nesta dissertação. Um método similar foi utilizado c para realizar uma prova de conceito relativa à medida de diversidade em um cenário financeiro, mais especificamente no mercado de ações para papéis de empresas do setor elétrico.

No contexto desta dissertação, a ideia central deste trabalho é avaliar a eficiência das áreas de carga e descarga para a distribuição urbana de mercadorias utilizando-se das medidas de diversidade de uma rede *multiplex*. Neste trabalho, o conceito de eficiência refere-se a usabilidade das áreas de carga e descarga por determinados setores do comércio. A abordagem metodológica deste estudo é apresentada na Figura 9, cujas etapas estão detalhadas a longo deste capítulo.

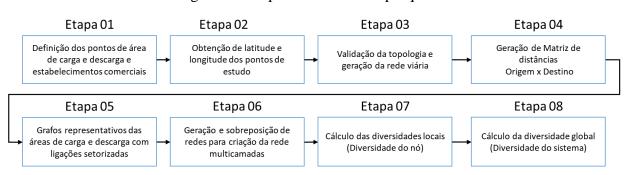


Figura 9 – Etapas do método de pesquisa.

4.1 Área de estudo e dados de entrada

Belo Horizonte é a capital do estado de Minas Gerais, possui população de 2,51 milhões de habitantes em 2016, com uma área de 331 km² e o quarto maior Produto Interno Bruto (PIB) do Brasil, com cerca de 51,21 bilhões de reais e PIB per capita de R\$ 35.122,01 (IBGE, 2010). O município é sede da Região Metropolitana de Belo Horizonte (RMBH), juntamente com outros 33 municípios, entretanto, somente 19 encontram-se espacialmente na mancha conturbada da Capital mineira, totalizando um contingente populacional de 5,28 milhões de habitantes, aproximadamente 80% da população da RMBH (IBGE, 2010). A região central de Belo Horizonte (Figura 10) foi a área de estudo considerada neste estudo. Para tanto, a rede *multiplex* é composta por nós e camadas, na qual os nós representam as áreas de carga e descarga e as camadas representadas pelos setores do comércio.

ÁREA CENTRAL DE BELO HORIZONTE

HIPERCENTRO DE BELO HORIZONTE

CONTREDO

SOUND SANDA DE SENSION SANDA DE SEN

Figura 10 - Município de Belo Horizonte e área central.

Na etapa 01 foi definido a área de estudo. A localização das áreas de carga e descarga e dos estabelecimentos comerciais foram identificados nesta área. Para tanto, utilizou-se base de dados disponibilizadas pela Prefeitura Municipal de Belo Horizonte. Os endereços encontravam-se em planilha eletrônica conforme exemplificado na Figura 11 e Figura 12.

Figura 11 – Exemplo de informações de área de carga e descarga.

N.º	Enderson	N.º	Comprimento
C/D	Endereço	(Numeral)	(Metros)
72	Av. Álvares Cabral entre R. Alvarenga Peixoto e Av. O. Maciel	1316	17
71	Av. Álvares Cabral entre R. Gonçalves Dias e R. Santa Catarina	1200	12
74	Av. Álvares Cabral entre R. Tomaz Gonzaga e R. Alvarenga Peixoto	1345	13
66	Av. Bias Fortes entre R. Bahia e R. Gonçalves Dias	216	13
60	Av. Bias Fortes entre R. Curitiba e R. Aimorés	837	22
58	Av. Bias Fortes entre R. Guajajaras e R. Timbiras	955	19
47	R. Aimorés entre Av. Álvares Cabral e Av. Bias Fortes	1862	16
86	R. Aimorés entre R. Espírito Santo e Av. Álvares Cabral	1697	12
55	R. Aimorés entre R. Santa Catrina e Av. Olegário Maciel	2246	14
43	R. Alvarenga Peixoto entre R. Espírito Santo e R. Rio de Janeiro	295	13
16	R. Alvarenga Peixoto entre R. São Paulo e R. Curitiba	563	11
17	R. Alvarenga Peixoto entre R. São Paulo e R. Curitiba	608	12

Figura 12 – Exemplo de informações de estabelecimentos comerciais.

NOMEEMPRES	DESC_LOGRA	NOME_LOGRA	NUMERO	CEP	ESTADO	CIDADE	CNAEPRINCI
VOLTA COM FE TRANSPORTES LTDA	AVE	AFONSO PENA	000748	30130904	MG	BELO HORIZONTE	4930202
LELU COMERCIAL LTDA - ME	AVE	AFONSO PENA	000262	30130923	MG	BELO HORIZONTE	4923002
TRANSBRASILIANA TRANSPORTES E TURISMO LTDA	PCA	RIO BRANCO	000100	30111050	MG	BELO HORIZONTE	4922102
BELTRAME TRANSPORTES E COMERCIO LTDA - ME	RUA	ESPIRITO SANTO	000341	30160030	MG	BELO HORIZONTE	4930202
BPA TRANSPORTES LTDA	PRACA	RIO BRANCO	000100	30111050	MG	BELO HORIZONTE	4922101
EMPRESA DE TRANSPORTES SANTAFE LTDA	PCA	RIO BRANCO	000100	30111050	MG	BELO HORIZONTE	4929901
PASSARO LIVRE TRANSPORTE DE PASSAGEIROS LTDA - EPP	PCA	RIO BRANCO	000100	30111050	MG	BELO HORIZONTE	4929901
VIACAO ARCOS LTDA - ME	PCA	RIO BRANCO	000100	30111050	MG	BELO HORIZONTE	4922101
EXPRESSO MD LTDA - ME	AVE	AFONSO PENA	000526	30130901	MG	BELO HORIZONTE	4930202
TRANSCARINHO TRANSPORTE E TURISMO LTDA - ME	AVENIDA	AFONSO PENA	000526	30130001	MG	BELO HORIZONTE	4924800
WORKING LOGISTICA TRANSPORTES E SERVICOS LTDA - EPP	RUA	ESPIRITO SANTO	000466	30160916	MG	BELO HORIZONTE	4930201
FAMA VEICULOS LTDA - ME	RUA	DOS GOITACAZES	000014	30190908	MG	BELO HORIZONTE	4930202
WANDERLEY CORREA DOS SANTOS - ME	AVENIDA	OLEGARIO MACIEL	000742	30180110	MG	BELO HORIZONTE	4929902

Os dados dos estabelecimentos comerciais foram obtidos do Cadastro Municipal de Contribuintes (CMC), que é o cadastro geral de pessoas jurídicas que exercem atividades no Município de Belo Horizonte, e que estão sujeitas ao pagamento do Imposto Sobre Serviços de Qualquer Natureza - ISSQN ou das Taxas Mobiliárias (Taxa de Fiscalização, Localização e Funcionamento - TFLF, Taxa de Fiscalização Sanitária - TFS e Taxa de Fiscalização de Engenhos de Publicidade - TFEP).

O CMC contém uma lista de aproximadamente 260 mil estabelecimentos localizados em Belo Horizonte contendo todo tipo de comércio/serviço. Para a presente pesquisa, considerando a área de estudo, foram selecionados os estabelecimentos dos bairros Centro, Santa Efigênia, Floresta, Funcionários, Boa Viagem, Savassi, Lourdes, Santo Agostinho e Barro Preto, que compõe a região central de Belo Horizonte. Estes bairros concentram aproximadamente 15 mil estabelecimentos cadastrados no CMC.

Os estabelecimentos comerciais foram classificados pelo código de atividades econômicas (CNAE) para agrupamento por setores do comércio como, por exemplo, comércio varejista de bebidas, comércio varejista de lacticínios e frios, dentre outros. Para esta dissertação foram priorizados setores que comercializam produtos do gênero alimentício, conforme apresentado na Tabela 3, totalizando 10 ao total.

A escolha dos setores se deu por similaridade do tipo e volume das mercadorias entregues. Isto é importante pois, como exemplo, a entrega de produtos volumosos, como colchões, requer equipamentos especiais de movimentação para realização da entrega, alterando o tempo médio de entrega o que poderia implicar na distorção dos resultados.

Tabela 3 – Setores considerados na pesquisa.

Número CNAE	Classificação Nacional de Atividades Econômicas	Quantidade de estabelecimentos
4729699	Comércio varejista de produtos alimentícios em geral ou especializado em produtos alimentícios não especificados anteriormente	306
4771701	Comércio varejista de produtos farmacêuticos, sem manipulação de fórmulas	192
4721104	Comércio varejista de doces, balas, bombons e semelhantes	156
4723700	Comércio varejista de bebidas	146
4712100	Comércio varejista de mercadorias em geral, com predominância de produtos alimentícios - minimercados, mercearias e armazéns	136
4724500	Comércio varejista de hortifrutigranjeiros	102
4721102	Padaria e confeitaria com predominância de revenda	90
4721103	Comércio varejista de laticínios e frios	77
4771702	Comércio varejista de produtos farmacêuticos, com manipulação de fórmulas	71
4693100	Comércio atacadista de mercadorias em geral, sem predominância de alimentos ou de insumos agropecuários	41
Total Geral		1317

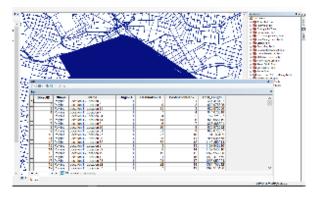
Os dados de localização das áreas de carga e descarga (Anexo A) foram extraídos de uma tabela fornecida pela BHTRANS (Empresa de Transportes e Trânsito de Belo Horizonte).

4.2 Georreferenciamento dos dados e obtenção das distâncias da rede

Na etapa 02, através de uma API do Google *Maps* (*Google Geocoding API*) apresentado na Figura 13, foi feito o *upload* da planilha eletrônica contendo os endereços das áreas de carga e descarga e dos estabelecimentos comerciais para obtenção da latitude e longitude. É importante que todos os endereços sejam geocodificados, uma vez que a localização dos estabelecimentos e das áreas é dado de entrada (*input*) para a obtenção da rede *multiplex*.

Figura 13 – Código de geração de endereços para geocodificação.

```
$geo= array();
$a = "Adress"; // Pega parâmetro
$addr = str_replace(" ", "+", $a); // Substitui os espaços por + conforme padrão 'maps.google.com'
$address = utf8_encode($addr); // Codifica para UTF-8 para não dar erro no envio do parâmetro


// Daqui em diante é o código original
$geocode = file_get_contents('http://maps.google.com/maps/api/geocode/json?address=' . $address . '&sensor=false');
$output = json_decode($geocode);
$lat = $output->results[0]->geometry->location->lat;
$long = $output->results[0]->geometry->location->lng;

$geo['lat']=$lat;
$geo['lat']=$lat;
$geo['long']=$long;
echo "cryo=> Latitude: ";
print_r($geo['lat']); // Retorna a latitude
echo "<br/>br /> Longitude: ";
print_r($geo['long']); // Retorna a longitude
echo "<br/>br /> Coutput); // Retorna a latitude e a longitude juntas
```

Na etapa 03, o *software* ArcGis foi utilizado como ferramenta para organização dos dados e definição das redes. Inicialmente foi considerado um *shapefile* de feições geométricas de linhas que representavam a rede viária da área de estudo. Após a avaliação e validação de todos os contornos (Figura 14), verificou-se a topologia da rede através de uma ferramenta chamada *Topology* do ArcGis. Esta análise de topologia consiste na certificação de que todas as conexões tenham a devida conectividade de modo a gerar uma rede que seja efetiva e represente o caminho dos pedestres, que no caso desta pesquisa tratam-se dos entregadores.

The state of the s

Figura 14 – Correções ArcGis.

Na etapa 04 é obtida a matriz de distâncias. No presente estudo, assumiu-se que áreas de carga e descarga são pontos de origem e estabelecimentos comerciais são pontos de destinos. Assim, foi gerada uma matriz origem destino, baseada na distância viária, de todas as origens para todos os destinos possíveis. O algoritmo faz a busca pelo caminho mínimo de cada par Origem-Destino utilizando o Algoritmo de Dijkstra, que busca sempre pelo menor caminho da rede. A forma de utilização do algoritmo de Dijkstra para criação de matriz origem destino no ArcGis está detalhado em Karadimas *et al.* (2015).

4.3 Obtenção da rede *multiplex*

Na etapa 05 foram gerados os grafos da rede *multiplex*. A matriz de distâncias obtida na etapa 4 é particionada por setor do comércio, conforme Tabela 3. Desta forma, cada camada da rede *multiplex* (10 ao total) corresponderá a um setor do Comércio, representada pelas áreas de carga e descarga que atendem aos estabelecimentos deste mesmo setor. Para tanto, foi utilizado algoritmo desenvolvido em *Python* (Figura 15), que aloca áreas de carga e descarga aos estabelecimentos comerciais.

Figura 15 – Algoritmo para obtenção dos grafos da rede *multiplex* para cada setor do comércio.

```
import os
import pandas as pd

dfs={}

for file in os.listdir('/home/camilo/Documents/bases_ic/vagas/csv/'):
    df=pd.read_csv('/home/camilo/Documents/bases_ic/vagas/csv/'+file)
    dfs.update({file:df})

for nome, df in dfs.items():
    pivot=df.pivot(index='origem',columns='destino', values='distancia')
    pivot=pivot.rename_axis(None)
    pivot=pivot.rename_axis(None, axis=1)
    pivot.to_csv('/home/camilo/Documents/bases_ic/vagas/pivot/'+nome)
```

Desta forma, o resultado obtido pelo algoritmo apresentado na Figura 16, obtém uma matriz binária que tem como dados de entrada, as camadas por setor do comércio e como resultado, uma matriz binária que considera a distância máxima definida pelo usuário. Assim, quando a distância for igual ou menor do que o distância máxima definida pelo usuário é atribuído o valor 1 e quando for maior é atribuído o valor 0. Neste estudo, foram consideradas as seguintes distâncias viárias máximas entre as aéreas de carga e descarga e os estabelecimentos comerciais: 25, 50, 75, 100, e 150 metros. Estas distâncias permitem realizar uma análise de sensibilidade da eficiência da rede de aéreas de carga e descarga.

Figura 16 – Algoritmo para definição de limites.

Considerando a matriz compostas por combinações entre 0 e 1, em que o valor 0 significa uma distância maior que a definida para o parâmetro e o valor 1 uma distância menor ou igual ao limite colocado, agora precisa-se obter as camadas, considerando as distâncias máximas definidas pelo usuário. Para tanto, utilizou-se o algoritmo apresentado na Figura 17, que faz a

conexão entre o algoritmo para obtenção dos grafos da rede *multiplex* para cada setor do comércio (Figura 15) e o algoritmo para definição dos limites (Figura 16). Este algoritmo considera todas as linhas que o algoritmo de limites indicou como 1 e retorna a distância real entre a área de carga e descarga e os estabelecimentos comerciais.

Figura 17 – Algoritmo de conexão entre a tabela binária e as camadas da rede multiplex.

```
import os
import pandas as pd
limites=[25,50,75,100,150]
for lim in limites:
    for file in os.listdir('/home/camilo/Documents/bases ic/vagas/binarias/'+str(lim)):
        bin=pd.read_csv('/home/camilo/Documents/bases_ic/vagas/binarias/'+str(lim)+'/'+file,header=0,index_col=0)
        arq=open('/home/camilo/Documents/bases_ic/vagas/ligacoes/'+str(lim)+'/'+os.path.splitext(file)[0]+'.txt','w+')
        for vaga.estabs in bin.iterrows():
            linha='
            existe=False
            for estab,ligacao in estabs.items():
                if ligacao==1:
                    existe=True
                    linha+=str(vaga)+' '+str(estab)+'\n'
            if(not existe):
                linha=str(vaga)+'\n'
            arq.write(linha)
        for n in range(699,2016):
            arq.write(str(n)+'\n')
        arq.close()
```

Como resultado, obtém-se arquivos de texto (.txt) denominados de *edge list* (Figura 18). Cada *edge list* é composta por todas as áreas de carga e descarga do sistema, classificadas como ativas ou inativas. Uma área de carga e descarga é considerada ativa se está a uma distância k (k = 25, 50, 75, 100 e 150 metros) de um estabelecimento comercial de um determinado setor do comércio. Caso contrário, esta área de carga e descarga é classificada como inativa na composição da *edge list*.

Figura 18 – Exemplo de *Edge List*.

A *edge list* é a lista com todos os nós e arestas que compõe a rede. É um grafo do tipo G = (V, E), em que ambas as colunas representam nós (áreas de carga e descarga). A apresentação dos nós neste formato (tupla), implica uma aresta de ligação entre estes dois. A repetição de um mesmo nó indica as várias ligações que um mesmo nó tem. Para o tema da presente pesquisa significa as várias áreas de carga e descarga que atendem a um mesmo setor do comércio da região central de Belo Horizonte.

Na etapa 06 foi gerada uma rede *monoplex* para cada um dos setores analisados, a partir das *edge lists* obtidas na etapa anterior. Vale ressaltar que estas redes *monoplex* são redes compostas por apenas por uma camada. A rede *multiplex* é obtida pela sobreposição das dez

redes *monoplex*, que representam cada um dos setores do comércio considerados neste estudo. A Figura 19 exemplifica a conexão entre os nós (áreas de carga e descarga), arestas e camadas da rede *multiplex*.

Uma exemplificação é feita na Figura 19, um mesmo nó em uma rede *multiplex* pode ter graus diferentes nas diferentes camadas da rede. Para o nó em destaque observa-se que no setor A tem grau igual a 1, ou seja, se conecta apenas com um vizinho. Já para o setor B o mesmo nó se conecta com 4 vizinhos, logo o grau do nó para a camada do setor B é igual a 4 e na camada do setor C o nó se conecta com 3 vizinhos, e o grau do nó nesta camada é igual a 3. Retomando o conceito base de diversidade, quanto mais diferente, maior é a capacidade de capilaridade de um mesmo nó na rede.

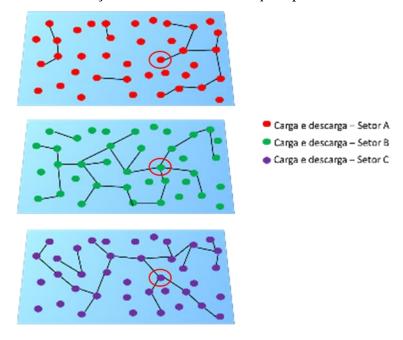


Figura 19 – Ilustração teórica de Rede Multiplex para o caso em estudo.

Para cada distância viária máxima entre as áreas de C/D os estabelecimentos comerciais (25, 50, 75, 100 e 150 metros), obtém-se uma rede *multiplex*.

4.4 Cálculo da diversidade dos nós

Na etapa 07 e 08 foram calculadas as diversidades locais e globais para o sistema de acordo com a descrição apresentada no Capítulo 3. A Figura 20 apresenta o algoritmo para o cálculo da diversidade, apoiando-se na Equação 1 e Equação 2. Foi utilizado U_i para diversidades locais (diversidade do nó) e U para diversidades globais (diversidade do sistema).

Figura 20 – Algoritmo para cálculo de diversidade.

```
#Nesta linha indicamos o diretorio onde faremos a leitura e escrita dos grafos
setwd("C:/Users/Dell/Google Drive/Mestrado ETG/Dissertação - Multiplex Networks/Ensaios de diversidade/150")
#Leitura dos grafos no formato edgelist utilizando o pacote igraph
g <- graph(scan("Comercio_varejista_de_produtos_farmaceuticos,_sem_manipulacao_de_formulas.txt"), directed=FALSE,n=2015)
v <- graph(scan("Padaria_e_confeitaria_com_predominancia_de_revenda.txt"), directed=FALSE,n=2015)
plot(g, layout=layout_randomly)
plot(v, layout=layout_randomly)
j<-simplify(j, remove.multiple = TRUE, remove.loops = TRUE)</pre>
#calculo da nodedistance dos grafos g e v
ndg<-nodedist(g)
ndv<-nodedist(v)
#calculo da matriz de transicao dos grafos Camada 01 e Camada 02
tg<-mat.trans(g)
tv<-mat.trans(v)
#calculamos a distancia entre os grafos Camada 01 e Camada 02
matrizDi<-Di(ndg,tg,ndv,tv)
D=mean(matrizDi)
write.table(matrizDi,file='MatrixDi.txt',sep='\t',na="",quote=FALSE)
#Para calcular a diversidade do sistema
#definimos uma matriz de distancia
a=Matrix(0,ncol=2,nrow=2)
a[1,2]<-mean(Di(ndg,tg,ndv,tv))
a[2,1]<-mean(Di(ndv,tv,ndg,tg))
#com a matriz completa podemos calcular a diversidade
div<-diversity(a)</pre>
```

4.5 Conclusão do capítulo

Neste capítulo foram apresentados os parâmetros e as métricas utilizadas para realização dos testes para cálculo das diversidades e dissimilaridades das redes de distribuição urbana de mercadorias de Belo Horizonte. A região central de Belo Horizonte foi a área de estudo escolhida para a aplicação das metodologias apresentadas. Fundamentando-se no trabalho de Carpi *et al.* (2019), procurou-se adaptar os conceitos de distribuição urbana de mercadorias para os conceitos de diversidade em redes multicamadas, mais especificamente as redes *multiplex*. Observa-se que boa parte da metodologia consistiu na preparação das informações de localização dos pontos e saneamento das variáveis de distância, compondo relações juntamente com a criação de algoritmos para a realização dos testes. Foram realizados testes de agrupamento de setores do comércio e testes de proximidade de áreas de carga e descarga. O próximo capítulo apresenta os resultados e as análises relativas ao método de pesquisa, a identificação de influência tanto de setores do comércio como áreas de carga e descarga para o funcionamento da rede e a suas respectivas importâncias para o sistema.

5 RESULTADOS E DISCUSSÕES

Neste capítulo são apresentados os resultados obtidos utilizando o conceito de dissimilaridade e diversidade em redes multiplex. Ao final são apresentadas as discussões dos resultados a respeito da influência dos setores do comércio (que representam as camadas da rede *multiplex*) no equilíbrio geral do sistema e na diversidade geral da rede, bem como a importância das áreas de carga e descarga para o funcionamento harmônico da rede analisada.

5.1 Dados do estudo

Nesta dissertação, a rede *multiplex* considerada é composta pelas entidades envolvidas em um sistema de distribuição urbana de mercadorias, isto é, as áreas de carga e descarga (denominada como "áreas C/D" nesta seção de resultados) e estabelecimentos comerciais. Dos 2.015 pontos considerados, 698 correspondem a áreas C/D (34,64%) e 1.317 a estabelecimentos comerciais em diferentes setores do comércio, conforme apresentado na Tabela 4. Relembrando que estes setores foram selecionados pois apresentam similaridades entre tipo e volume das mercadorias entregues.

Tabela 4 – Distribuição dos estabelecimentos comerciais por setor.

Número da camada	Número CNAE	Classificação Nacional de Atividades Econômicas	Número de estabelecimentos	Percentual
1	4729699	Comércio varejista de produtos alimentícios em geral ou especializado em produtos alimentícios não especificados anteriormente	306	23,23%
2	4771701	Comércio varejista de produtos farmacêuticos, sem manipulação de fórmulas	192	14,58%
3	4721104	Comércio varejista de doces, balas, bombons e semelhantes	156	11,85%
4	4723700	Comércio varejista de bebidas	146	11,09%
5	4712100	Comércio varejista de mercadorias em geral, com predominância de produtos alimentícios - minimercados, mercearias e armazéns	136	10,33%
6	4724500	Comércio varejista de hortifrutigranjeiros	102	7,74%
7	4721102	Padaria e confeitaria com predominância de revenda	90	6,83%
8	4721103	Comércio varejista de laticínios e frios	77	5,85%
9	4771702	Comércio varejista de produtos farmacêuticos, com manipulação de fórmulas	71	5,39%
10	4693100	Comércio atacadista de mercadorias em geral, sem predominância de alimentos ou de insumos agropecuários	41	3,11%
Total Gera	al		1.317	100%

A localização das áreas de carga e descarga na região central não seguem um padrão de distribuição uniforme conforme pode ser observado na Figura 21. A distribuição não uniforme ocorre pelo fato da solicitação para implementação de novas áreas ser de responsabilidade dos

proprietários dos estabelecimentos comerciais, para com posterior avaliação da empresa reguladora BHTRANS (BELO HORIZONTE, 2017). Desta forma, demonstrado a necessidade e a inexistência de uma área próxima, novas áreas são implantadas na via pública.

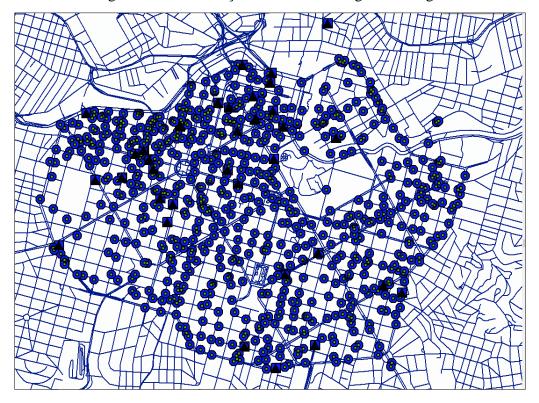


Figura 21 – Localização das áreas de carga e descarga.

5.2 Resultados globais da rede

O resultado global da rede indica a dissimilaridade e a diversidade entre as áreas de carga/descarga e as camadas que representam os setores comerciais analisados. Na análise da dissimilaridade, busca-se redes cuja distância entre as áreas C/D e as camadas tenham alta dissimilaridade, indicando que uma mesma área atende vários estabelecimentos em diferentes setores comerciais. Como resultado desta análise, tem-se a diversidade da rede, isto é, quanto maior o valor obtido, maior a conexão entre as áreas C/D e os estabelecimentos comerciais.

Os resultados da dissimilaridade (D_{pq}) são apresentados através de uma matriz simétrica em que a diagonal principal recebe o valor zero, já que a comparação entre redes idênticas é igual a 0. Além disso, se:

• $D_{pq} = 0$, tem-se que as camadas p e q apresentam padrões de conectividade idênticos, isto é, cada área C/D possui o mesmo conjunto de áreas vizinhas nas camadas analisadas. Neste caso, pode-se entender que existem poucas áreas atendendo os estabelecimentos comerciais dos diferentes setores, apresentando similaridade e, a

diversidade global, consequentemente, é baixa devido à falta de conexão entre as áreas de C/D e as camadas analisadas;

- $D_{pq} = 1$ reflete a total dissimilaridade entre as camadas p e q isto é, cada área C/D possui áreas vizinhas diferentes em cada uma das camadas analisadas. Neste caso um sistema com dissimilaridade alta entre camadas consequentemente tem uma alta diversidade, o que pode ser traduzido em alto atendimento aos estabelecimentos comerciais pelas áreas C/D;
- Valores intermediários representam graus distintos de dissimilaridade entre as áreas
 C/D e os estabelecimentos comerciais dos setores analisados.

A Tabela 5 apresenta a análise da dissimilaridade para uma distância de até 25 metros das áreas C/D para os estabelecimentos comerciais, e entre as áreas C/D. Neste caso, tem-se um grafo conectando áreas C/D e estabelecimentos comerciais cuja distância entre estes nós é de no máximo 25 metros.

Tabela 5 - Análise de dissimilaridade das camadas para distância de até 25 metros.

Camada	1	2	3	4	5	6	7	8	9	10
1	0,000									
2	0,283	0,000								
3	0,097	0,271	0,000							
4	0,067	0,252	0,098	0,000						
5	0,067	0,252	0,098	0,000	0,000					
6	0,441	0,239	0,395	0,375	0,375	0,000				
7	0,291	0,291	0,291	0,277	0,277	0,337	0,000			
8	0,040	0,244	0,090	0,106	0,106	0,480	0,301	0,000		
9	0,414	0,229	0,386	0,480	0,480	0,107	0,360	0,375	0,000	
10	0,227	0,372	0,172	0,161	0,161	0,256	0,309	0,225	0,321	0,000

Observa-se baixos valores de dissimilaridades para as camadas, visto a reduzida cobertura das áreas de carga e descarga para uma distância máxima de 25m. As redes são similares devido ao fato de elas estarem desconexas, isto é, não terem áreas C/D para atendimento nesta distância. Em vermelho, destaca-se baixos valores de dissimilaridade entre a camada 8 e as camadas 3 ($D_{3,8} = 0,090$), 4 ($D_{4,8} = 0,106$) e 5 ($D_{5,8} = 0,106$). Em contrapartida, observa-se maior dissimilaridade entre as camadas 9 e as camadas 4 ($D_{4,9} = 0,480$) e 5 ($D_{5,9} = 0,480$). Comparativamente, esses maiores valores de dissimilaridades representam uma maior contribuição para a diversidade da rede, pois quanto mais diferente, maior será a capilaridade da rede, isto é, quanto maior a dissimilaridade, maior o número de áreas C/D atendendo estabelecimentos de diferentes setores comerciais. A Tabela 6 apresenta mesma análise para as demais distâncias analisadas (50, 75, 100 e 150 metros).

Tabela 6 - Análise de dissimilaridade dos setores analisados.

Distâr	ncia de até	50 metro	S							
0	1	2	3	4	5	6	7	8	9	10
1	0,000									
2	0,292	0,000								
3	0,285	0,258	0,000							
4	0,414	0,229	0,237	0,000						
5	0,253	0,158	0,260	0,241	0,000					
6	0,262	0,281	0,172	0,270	0,189	0,000				
7	0,360	0,346	0,336	0,314	0,362	0,324	0,000			
8	0,209	0,239	0,231	0,321	0,144	0,129	0,364	0,000		
9	0,319	0,150	0,303	0,187	0,256	0,317	0,313	0,316	0,000	
10	0,270	0,230	0,217	0,263	0,221	0,130	0,288	0,216	0,277	0,000
	ncia de até	-		0,203	0,221	0,150	0,200	0,210	0,277	0,000
0	1	2	3	4	5	6	7	8	9	10
1	0,000	_		-		U U	,			10
2	0,305	0,000								
3	0,313	0,256	0,000							
4	0,273	0,174	0,311	0,000						
5	0,269	0,343	0,294	0,326	0,000					
6	0,209	0,237	0,290	0,204	0,255	0,000				
7	0,376	0,343	0,323	0,344	0,302	0,340	0,000			
8	0,297	0,240	0,263	0,301	0,318	0,302	0,302	0,000		
9	0,260	0,277	0,317	0,248	0,317	0,249	0,380	0,250	0,000	
10	0,207	0,247	0,357	0,182	0,317	0,165	0,373	0,307	0,255	0,000
	ncia de até	-	-	0,102	0,510	0,103	0,373	0,507	0,233	0,000
0	1	2	3	4	5	6	7	8	9	10
1	0,000	—	3	-		U	,	U		10
2	0,330	0,000								
3	0,361	0,326	0,000							
4	0,270	0,267	0,362	0,000						
5	0,262	0,327	0,302	0,367	0,000					
6	0,280	0,327	0,332	0,303	0,000	0,000				
7	0,305	0,350	0,346	0,323	0,284	0,000	0,000			
8	0,303	0,370	0,286	0,323	0,264	0,320	0,303	0,000		
9	0,240	0,375	0,250	0,350	0,104	0,320	0,364	0,000	0,000	
10	0,280	0,313	0,330	0,309	0,277	0,272	0,337	0,302	0,324	0,000
	ncia de até			0,507	0,277	0,272	0,557	0,502	0,524	0,000
0	1	2	3	4	5	6	7	8	9	10
1	0,000									
2	0,000 0,381	0,000								
		0,000	0,000							
2 3 4	0,381		0,000 0,400	0,000						
2 3 4 5	0,381 0,422 0,361 0,362	0,376 0,363 0,372	0,400 0,424	0,398	0,000					
2 3 4 5 6	0,381 0,422 0,361 0,362 0,378	0,376 0,363 0,372 0,387	0,400 0,424 0,419	0,398 0,386	0,329	0,000				
2 3 4 5	0,381 0,422 0,361 0,362	0,376 0,363 0,372	0,400 0,424	0,398		0,000	0,000			
2 3 4 5 6	0,381 0,422 0,361 0,362 0,378	0,376 0,363 0,372 0,387	0,400 0,424 0,419	0,398 0,386	0,329		0,000	0,000		
2 3 4 5 6 7	0,381 0,422 0,361 0,362 0,378 0,043	0,376 0,363 0,372 0,387 0,389	0,400 0,424 0,419 0,426	0,398 0,386 0,367	0,329 0,356	0,375		0,000 0,432 0,348	0,000	0,000

Observa-se um aumento expressivo nos valores de dissimilaridade entre as camadas com o aumento da distância de cobertura das áreas C/D. Mais uma vez, fica comprovado que quanto maior área de cobertura maior será o padrão de dissimilaridade entre as redes. Para valores que contribuem negativamente para a diversidade da rede destacam-se as camada 1 $(D_{1,7})$ para a distância de 150 metros e as camadas, 5 $(D_{5,8})$, 6 $(D_{6,8})$ e a 10 $(D_{6,10})$ como menores valores de dissimilaridade para a distância até 25 metros. Em contrapartida, as camadas 3 e 9 contribuem positivamente para diversidade da rede com altos valores de dissimilaridade. Estas camadas destacam-se principalmente na distância de até 150 metros, mas observa-se este aumento gradativo com o aumento da cobertura da distância. As camadas 3 (comércio varejista de doces, balas, bombons e semelhantes) e 9 (comércio varejista de produtos farmacêuticos, com manipulação de fórmulas) representam 17,24% da amostra total de estabelecimentos comerciais analisados, cuja localização está ilustrada na Figura 22. Além disso, 30% das maiores dissimilaridades são influenciadas por essas duas camadas

Figura 22 - Distribuição dos estabelecimento da camada 3 e 9.

Esses resultados permitem concluir que a contribuição de um determinado setor do comércio para capilaridade da rede de distribuição na qual ele está inserido não é uma relação direta entre a quantidade de estabelecimentos na rede, mas sim da sua localização e de como os estabelecimentos estão conectados com as áreas de carga e descarga que os servem.

Outro resultado interessante advém da análise da camada 8 (comércio varejista de produtos farmacêuticos, com manipulação de fórmulas), que tem baixa dissimilaridade considerando uma distância até 25 e 50 metros e, uma elevada dissimilaridade para distância até 100

metros. Isto ocorre devido a não concentração de estabelecimentos em uma região, conforme ilustrado na Figura 23.

Figura 23 – Distribuição dos estabelecimento da camada 8.

Em relação a diversidade do global do sistema (U(S)), que indica a capacidade de capilaridade da rede e atendimento ao número máximo de estabelecimentos, observa-se que quanto maior a área de cobertura, maior é a diversidade global do sistema conforme apresentado na Figura 24.

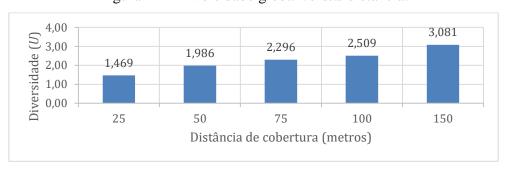


Figura 24 – Diversidade global *versus* distância.

Este resultado indica que quanto maior a diversidade global, maior o número de estabelecimentos atendidos por uma área C/D. No entanto, pode-se entender também que quanto maior a diversidade global, menor a acessibilidade da carga aos estabelecimentos comerciais, dado a necessidade de percorrer até 150 metros da área C/D até o estabelecimento para a entrega da mercadoria.

Contudo, observa-se pouca variação na dissimilaridade e na diversidade global para áreas de C/D localizadas até 50, 75 e 100 metros. Este resultado indica que a acessibilidade entre as áreas C/D e estabelecimentos comerciais é similar para estas distâncias. Apesar disso, essa similaridade tem impactos para os diferentes *stakeholders* da distribuição urbana.

Para o poder público, o mais importante é prover áreas C/D na via pública, conforme preconiza o código de trânsito brasileiro (BRASIL, 1997). Entretanto, faltam orientações para

implementação destas áreas que, em geral, não consideram a acessibilidade da carga aos estabelecimentos comerciais, a usabilidade e o nível de utilização das mesmas. Para o operador logístico, elevada acessibilidade aos estabelecimentos comerciais torna a entrega menos morosa e, consequentemente, mais lucrativa, visto a redução no tempo médio de operação e a maior eficiência do veículo de carga.

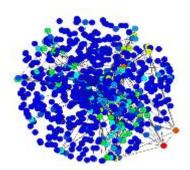
Desta forma, a concentração de áreas C/D em determinadas regiões não pode ser traduzido em um alto nível de atendimento aos estabelecimentos comerciais próximos, dado os baixos resultados de dissimilaridade e de diversidade identificados neste trabalho para pequenas distâncias. Esse efeito pode ser justificado pela distância de cobertura, isto é, quanto maior a área de cobertura de uma área de carga e descarga, maior é a capacidade de contribuir positivamente para o aumento da diversidade global da rede em que ela está inserida.

Outra análise interessante refere-se a influência dos setores do comércio na utilização das áreas de carga e descarga (dissimilaridade da rede) e na diversidade global da rede. Considerando a dissimilaridade dos setores do comércio apresentadas na Tabela 5 e Tabela 6, identifica-se a ordenação dos setores que contribuem com a diversidade global da rede. Na Tabela 7 é apresentada esta ordenação. Observa-se que o comércio varejista de produtos farmacêuticos sem manipulação de fórmulas (camada 9) é o segundo que mais utiliza áreas de carga e descarga. Contudo, observando a Tabela 4, este setor tem apenas 5,39% dos estabelecimento da amostra considerada neste estudo.

Tabela 7 – Ordenação dos setores que contribuem com a diversidade global da rede.

Ordenação	Camada	Setor
1	1	Comércio atacadista de mercadorias em geral
2	9	Comércio varejista de produtos farmacêuticos sem manipulação de
		fórmulas
3	3	Comércio varejista de doces balas bombons e semelhantes
4	10	Padaria e confeitaria com predominância de revenda
5	6	Comércio varejista de mercadorias em geral com predominância de
		produtos alimentícios
6	2	Comércio varejista de bebidas
7	4	Comércio varejista de hortifrutigranjeiros
8	8	Comércio varejista de produtos farmacêuticos com manipulação de
		fórmulas
9	5	Comércio varejista de laticínios e frios
10	7	Comércio varejista de produtos alimentícios em geral ou especializado
		em produtos alimentícios não especificados anteriormente

Desta forma, reforça-se a conclusão prévia de que a quantidade de estabelecimentos comerciais por setor não influencia na utilização das áreas de carga e descarga. Vale ressaltar


que neste estudo não está sendo considerado nenhuma taxa de entrega, o que poderia reforçar o resultado obtido, considerando os resultados descritos por Oliveira (2014).

5.3 Resultados locais da rede

O resultado local da rede indica a dissimilaridade e a diversidade entre os nós, que neste trabalho são representados pelas áreas C/D. Na análise da dissimilaridade dos nós é possível avaliar a importância de cada um dos nós na rede para cada uma das distâncias consideradas. A dissimilaridade das áreas C/D quantifica as diferenças dos padrões de conectividade das mesmas nas camadas para cada uma das distâncias consideradas. Áreas que apresentam alta dissimilaridade, atendem vários estabelecimentos em diferentes setores comerciais e se conectam com outras áreas similares na rede.

O perfil das redes de atendimento das áreas de carga e descarga da região central de Belo Horizonte é apresentado na Figura 25. Cada nó do grafo representa uma área C/D e o *link* entre estes nós representam a conexão entre as áreas que atendem aos estabelecimentos comerciais. Contudo, a elevada densidade de nós e o alto grau de relações tornam a visualização confusa e de difícil interpretação.

Figura 25 – Rede de áreas de carga e descarga.

Para facilitar a interpretação do grafo são apresentados os valores individuais de cada um dos nós em questão, que conseguem traduzir como cada um deles se comporta no grafo da Figura 26.

Os resultados da dissimilaridade $D_i(p,q)$ são apresentados através de um vetor em que o números de linhas corresponde ao número de nós analisados. Além disso, se:

D_i(p,q) = 0 indica que, não existe diferença de conexão da área C/D entre as redes p
e q, pois a distribuição de probabilidade (PDFs) das camadas são idênticas, isto é, as
áreas de C/D tem o mesmo perfil de vizinhança (conexões ou não conexões) nas
camadas analisadas;

- D_i(p,q) = 1 indica uma situação inversa, total dissimilaridade entre as áreas de C/D das camadas p e q isto é, a mesma área de C/D possui vizinhanças diferentes em cada uma das camadas analisadas;
- Valores intermediários representam graus distintos de dissimilaridade entre as áreas de
 C/D e os estabelecimentos comerciais dos setores analisados.

A Figura 26 apresenta a análise da dissimilaridade dos nós para uma distância de até 25 metros, isto é, um grafo conectando áreas C/D e estabelecimentos comerciais cuja distância entre estes nós é de no máximo 25 metros.

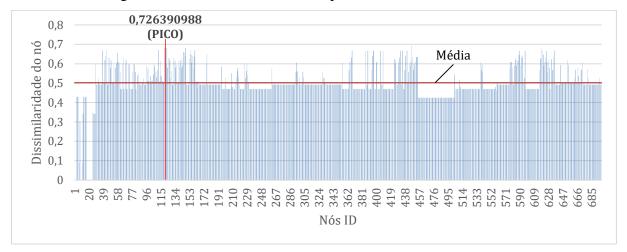


Figura 26 – Dissimilaridade do nó para a distância de 25 metros.

Analisando a Figura 26, observa-se que a maioria das medidas de dissimilaridade estão abaixo da média geral. As áreas C/D que apresentam baixos valores de dissimilaridade em geral não atendem um número significativo de estabelecimentos comerciais. Para uma distância até 25m, a área C/D (1) localizada na Avenida Afonso Pena, n° 1.456 é a que apresenta o menor valor de dissimilaridade. No caso, esse baixo valor de dissimilaridade pode ser justificado pela baixa concentração de comércios dentre os setores analisados neste trabalho, e por também se tratar de uma área utilizada para atendimento de serviços como bancos e demais serviços públicos concentrados nesta região. Outra área C/D com baixa dissimilaridade é a área (2), localizada na Avenida Afonso Pena, 1.394. As áreas (1) e (2) estão localizadas a 70 metros uma da outra e atendem basicamente os mesmos estabelecimentos comerciais.

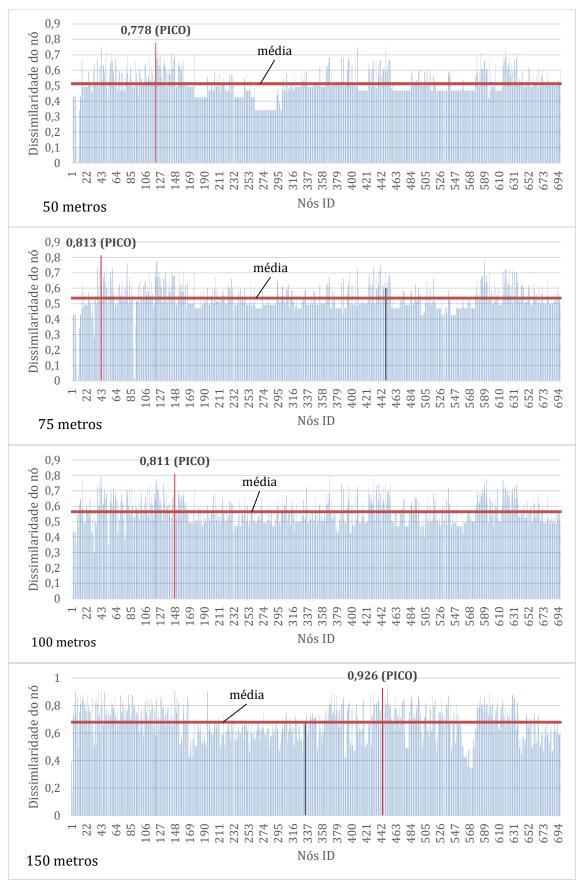


Figura 27 – Mapa de calor da dissimilaridade do nó para distância de 25 metros.

Em contrapartida, a área de C/D (121) apresenta o maior valor de dissimilaridade (0,7263). Esta área está localizada na Rua Rio Grande do Sul, n° 435. Esta área de C/D se encontra uma das regiões mais densas comercialmente na região central de Belo Horizonte, atendendo um dos maiores mercados municipais da cidade, em que boa parte dos setores analisados tem estabelecimentos comerciais dentro deste mercado, criando então uma tendência de atratividade e maior dissimilaridade das áreas de C/D que estão próximas destes mercados com alta concentração de estabelecimentos. Além disso, na Figura 27 observa-se uma maior concentração dos maiores valores de dissimilaridades próximos a área (121). Com altos valores de dissimilaridades e também localizados nesta região estão as áreas $D_{120} = 0,68091$, $D_{125} = 0,62977$.

A Figura 28 apresenta análise semelhante para demais distâncias analisadas (50, 75, 100 e 150 metros). Observa-se um aumento expressivo nos valores de dissimilaridade com o aumento da distância de cobertura das áreas C/D. Esses resultados permitem comprovar novamente que quanto maior área de cobertura, maior será o padrão de dissimilaridade entre as áreas C/D. Entre todas as 698 áreas C/D analisadas destacam-se as áreas 1 e 2 com valores de dissimilaridade idênticos e próximos de 0, $D_1 = 8,94\text{E-}09$ e $D_2 = 8,94\text{E-}09$ para as distâncias de 50, 75 e 100 metros, isso classifica estas áreas de carga e descarga como dispensáveis para os setores do comércio analisados. Os baixos valores de dissimilaridade para estas duas áreas representam a praticamente inexistência de qualquer um dos dez setores analisados em um raio médio de 100 metros em relação a estas áreas.

Figura 28 – Dissimilaridade dos nó.

Em contrapartida, as áreas C/D 121 ($D_{121} = 0.778$) e 16 ($D_{43} = 0.813$) destacam-se por serem as áreas C/D com as maiores dissimilaridades. Uma fato relevante e que justifica os

altos valores de dissimilaridade dessas áreas é que todas elas estão próximas entre si e localizadas em áreas com elevada densidade comercial. As áreas próximas de grandes centros comerciais se mostram beneficiadas por altas dissimilaridades mesmo em baixas áreas de cobertura, visto a facilidade de atendimento a vários estabelecimentos comerciais de uma só vez. Na Tabela 8 foi feito um recorte de algumas áreas C/D localizadas próximas a centros comerciais. Observa-se altos valores de dissimilaridade mesmo para baixas áreas de cobertura e um aumento ainda mais expressivo da dissimilaridade com o aumento da cobertura.

Tabela 8 – Amostra de dissimilaridade de áreas próximas a centros comerciais.

Nó	Dissimilaridade 25	Dissimilaridade 50	Dissimilaridade 75	Dissimilaridade 100	Dissimilaridade 150
13	0,430	0,430	0,430	0,657	0,874
16	0,430	0,671	0,625	0,768	0,835
43	0,671	0,747	0,813	0,805	0,802
53	0,590	0,551	0,631	0,353	0,737
54	0,493	0,461	0,503	0,356	0,747
77	0,469	0,469	0,521	0,383	0,694
78	0,557	0,557	0,597	0,435	0,764
81	0,557	0,697	0,580	0,681	0,761
121	0,726	0,778	0,674	0,646	0,580
123	0,681	0,753	0,779	0,703	0,578

A área de C/D 13 pode ser destacada por se mostrar imutável para as três primeiras distâncias de teste, entretanto, com o aumento da distância de cobertura da áreas, observa-se um aumento da dissimilaridade, concluindo-se e confirmando um aumento no atendimento de estabelecimentos comerciais e a conexão com as demais áreas de C/D da região.

De maneira análoga a que foi discutida na análise global das redes, observa-se pouca variação na dissimilaridade local para áreas de C/D localizadas até 50, 75 e 100 metros. Observa-se nas Figura 29, Figura 30 e Figura 31, o aumento das dissimilaridade a medida que se aumenta a área de cobertura. Este resultado reforça a conclusão que indica acessibilidade semelhante entre as áreas C/D e estabelecimentos comerciais até 100 metros. Conforme discutido anteriormente, essa similaridade tem impactos para os diferentes *stakeholders* envolvidos na distribuição urbana.

Dissimilaridade do por Livia a LONG

Dissimilaridade do nó -50 metros

All Salmas SANTA TEREZA

All Gallos

All Ga

Figura 29 – Dissimilaridade do nó para distância de 50 metros.

Figura 30 – Dissimilaridade do nó para distância de 75 metros.

0

RAJAÚ Bing

Figura 31 – Dissimilaridade do nó para distância de 100 metros.

Contudo, considerando uma distância de 150 metros entre áreas C/D e estabelecimentos comerciais (Figura 32), existe uma maior área de cobertura e uma maior utilização das áreas C/D na região analisada.

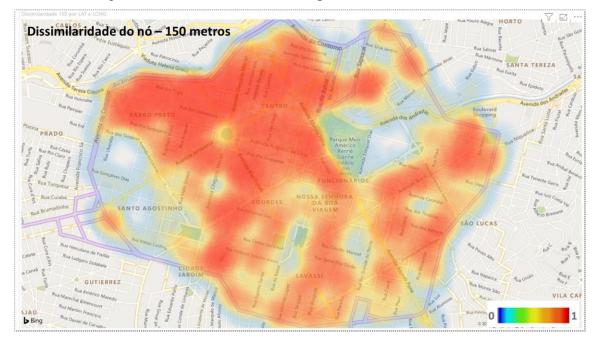


Figura 32 – Dissimilaridade do nó para distância de 150 metros.

Do ponto de vista do poder público, a disponibilidade de áreas de C/D na via pública atende as diretrizes do código de trânsito brasileiro (BRASIL, 1997) e a distância até o estabelecimento comercial é muitas vezes desprezada pelos analistas de transporte, visto que nada é preconizado sobre a implantação destas áreas. Contudo, do ponto de vista das

empresas de transporte e dos operadores logísticos, a acessibilidade fica prejudicada em detrimento da distância de cobertura. Neste cenário, para as áreas com elevados valores de dissimilaridade, os operadores precisariam caminhar por até 150 metros para atendimento a um determinado estabelecimento comercial, de maneira oposta, de forma geral observa-se baixos valores de dissimilaridade para as menores distâncias de cobertura concluindo então que, baixos valores de dissimilaridade podem ser traduzidos em baixa acessibilidade.

Áreas de C/D com altos valores de dissimilaridade se configuram como áreas uteis para a capilaridade da rede de distribuição urbana. Estas áreas podem ser classificadas e também utilizadas como *hubs* visto a importância delas para a rede e a alta incidência de conexões elevaram os valores de dissimilaridade destas áreas.

6 CONSIDERAÇÕES FINAIS

O principal objetivo deste trabalho foi avaliar a eficiência das áreas de carga e descarga para a distribuição urbana de mercadorias, utilizando-se de medidas de dissimilaridade e diversidade aplicadas em uma rede *multiplex*. Buscou-se ainda, criar um método para obtenção de uma rede *multiplex* com informações de áreas de C/D e estabelecimentos comerciais, para então avaliar a aplicabilidade dos conceitos em uma rede de distribuição de carga. Para tanto, considerou-se a área central de Belo Horizonte como região de estudo.

Apoiando-se no trabalho de Carpi *et al.* (2019), foram propostos novos modos de medir as diversidades em um sistema *multiplex*. Observa-se que inicialmente foram definidas as distâncias entre os nós e entre as camadas, reforçando que neste trabalho os nós foram representados pelas áreas de C/D e as camadas representadas pelos setores do comércio, para que então fossem utilizadas na definição da diversidade dos caminhos de conectividade de um nó (áreas de C/D) nas diferentes camadas (setores do comércio) e a diversidade dos caminhos de conectividade de todo o conjunto de camadas. Este conceito de distância, já abordado e estabelecido nas definições metodológicas, auxiliam na análise das redes de distribuição de cargas e foram utilizadas também para avaliar a importância de determinadas áreas de C/D e de setores do comércio para a diversidade do sistema.

Foram realizadas análises nas redes do ponto de vista global e local. Nas análises globais observou-se valores crescentes das dissimilaridades e das diversidades à medida que a distância de cobertura aumenta. Este resultado já era esperado visto que quanto maior a área de cobertura maior seria o número de estabelecimentos e áreas C/D consideradas, podendo ser traduzido em uma maior capilaridade da rede, ou seja, uma mesma área de C/D pode servir a um número maior de estabelecimentos comerciais a medida que se aumenta a área de cobertura. De maneira análoga, nas análises locais, foi observado aumento da dissimilaridade das áreas de C/D com o aumento da área de cobertura, ratificam os resultados encontrados de maiores dissimilaridades para as maiores áreas de cobertura. A dissimilaridade na análise local pode ser entendida da seguinte maneira, quanto maior for a diferença entre os padrões de conexão para uma mesma área nas várias distâncias analisadas, maior será a capacidade de atendimento desta área aos estabelecimentos contidos na rede.

Este estudo traz um aspecto inovador, um vez que a utilização de redes complexas na análise de distribuição urbana de mercadorias até então não tinha sido realizada. Logo, existem ainda inúmeras possibilidades a serem explorados acerca deste tema e correlatos.

Com esta dissertação, procurou-se explorar apenas alguns poucos setores que compõem toda a estrutura comercial da região central de Belo Horizonte, o que servirá de suporte para ampliação dos estudos de modo a avaliar todas as áreas de C/D com todos os setores do comércio, avaliando afundo a importância e a contribuição de cada setor e pontualmente cada área de C/D para a diversidade da rede. Os modelos e algoritmos propostos e dispostos no trabalho permitem avanços nas análises exploratórias, que não foram incluídos nesta dissertação por limitações de tempo, como por exemplo:

- Ampliação do recorte de setores incluídos na pesquisa;
- Cruzamento de informações com pesquisas já realizadas a respeito dos setores e tipos de estabelecimentos que mais atraem viagens;
- Proposição de um modelo ótimo para disposição das áreas, para que se tenha uma distribuição mais uniforme das áreas e consequentemente um aumento na diversidade média das áreas de C/D.

A modelagem aplicada e os resultados obtidos abrem boas perspectivas de discussão para trabalhos futuros que, com base na estruturação já construída nesta pesquisa levam a novas perguntas de pesquisa:

- Qual seria a real necessidade das áreas de C/D hoje existentes na região central de Belo Horizonte?;
- O comportamento seria o mesmo se o modelo fosse aplicado para um outro recorte do comercio, como por exemplo varejistas de eletrodomésticos em geral?;
- Qual é a influência da localização das áreas de carga e descarga na acessibilidade aos estabelecimentos comerciais?;
- Como a disposição correta das áreas de C/D e a redução média de um tempo de entrega poderiam ter impactos nos valores de fretes cobrados hoje pelas empresas de transporte?

Por fim, este trabalho contribuiu com um novo método para analisar a distribuição urbana de carga. As redes complexas se apresentam como uma ferramenta inovadora e ainda timidamente aplicada no transporte urbano de carga. Logo, o estudo desenvolvido alcançou os objetivos propostos, no entanto há de se ressaltar a importância da ampliação das análises para que os resultados fiquem ainda mais assertivos e contribuam de maneira satisfatória na tomada de decisões

REFERÊNCIAS BIBLIOGRÁFICAS

AHUJA, R. K., MAGNANTI, T. L., ORLIN, J. B., & WEIHE, K. *Network Flows: Theory, Algorithms, and Applications.* PRENTICE-HALL: New Jersey, 1993.

AIURA, N., & TANIGUCHI, E. Planning On-Street Loading-Unloading Spaces Considering the Behaviour of Pickup-Delivery Vehicles. *Journal of the Eastern Asia Society for Transportation Studies*, v. 6, p. 2963-2974, 2005. DOI: https://doi.org/10.11175/easts.6.2963

ALBERT, R., & BARABÁSI, A. L. Statistical mechanics of complex networks. *Reviews of Modern Physics*, v. 74, n. 1, p. 47–97, 2002. DOI: https://doi.org/10.1103/RevModPhys.74.47

ALETA, A., MELONI, S., & MORENO, Y. A Multilayer perspective for the analysis of urban transportation systems. *Scientific Reports*, v. 7, n. 1, p. 44359, 2017. DOI: http://dx.doi.org/10.1038/srep44359

ALLEN, J., THORNE, G. & BROWNE, M. Guia de Boas Práticas no Transporte Urbano de Mercadorias - BESTUFS. p. 82, 2007.

AMARAL, L. A. N., SCALA, A., BARTHÉLÉMY, M. & STANLEY, H. E. Classes of behavior of small-world networks. *Proceedings of the National Academy of Sciences*, v. 97, n. 2, p.11149-11152, 2000. DOI: http://dx.doi.org/10.1073/pnas.200327197

BARABÁSI, A. L. The physics of the Web. *Physics World*, v. 14, n. 7, p. 33–38, 2001.

BARTHÉLEMY, M. Spatial networks. *Physics Reports*, v. 499, n. 1–3, p. 1–101, 2011. DOI: http://dx.doi.org/10.1016/j.physrep.2010.11.002

BELO HORIZONTE. Política De Logística Urbana De Belo Horizonte, 2017 Disponível: https://prefeitura.pbh.gov.br/bhtrans/carga-urbana/politica-de-logistica-urbana

BOCCALETTI, S., BIANCONI, G., CRIADO, R., DEL GENIO, C. I., GÓMEZ-GARDENES, J. & ROMANCE, M., Sendiña-Nadal, I., WANG, Z. & ZANIN, M. The structure and dynamics of multilayer networks. *Physics Reports*, v. 544, n. 1, p. 1–122, 2014. DOI:

BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., & HWANG, D. U. Complex networks: Structure and dynamics. *Physics Reports*, v. 424, n. 4–5, p. 175–308, 2006. DOI: https://doi.org/10.1016/j.physrep.2005.10.009

BOSSERT, W., PATTANAIK, P. K. & XU, Y. The Measurement of Diversity. *Annual Review of Ecology and Systematic*, v. 5, p. 285–307, 2001. DOI: https://doi.org/10.1146/annurev.es.05.110174.001441

BRASIL. Código de Trânsito Brasileiro. Lei No 9.503, e 23 de setembro de 1997, 1997.

BRUDER, D., PROBST-KEPPER, M., WESTENDORF, A. M., GEFFERS, R., BEISSERT, S., LOSER, K., von Boehmer H., BUER, J. & HANSEN, W. Neuropilin-1: A surface marker of regulatory T cells. *European Journal of Immunology*, v. 34, n. 5, p. 623-630, 2004. DOI: https://doi.org/10.1002/eji.200324799.

CARPI, L. C., SCHIEBER, T. A., PARDALOS, P. M., MARFANY, G., MASOLLER, C., DÍAZ-GUILERA, A., & RAVETTI, M. G. Assessing diversity in multiplex networks. *Scientific Report*, v. 9, p. 4511, 2019. DOI: https://doi.org/10.1038/s41598-019-38869-0

CARVALHO, R., BUZNA, L., BONO, F., GUTIÉRREZ, E., JUST, W., & ARROWSMITH, D. Robustness of trans-European gas networks. *Physical Review E*, v. 80, n. 1, p. 1–9, 2009. DOI: https://doi.org/10.1103/PhysRevE.80.016106

CHODROW, P. S., AL-AWWAD, Z., JIANG, S., & GONZÁLEZ, M. C. Demand and congestion in multiplex transportation networks. *PLoS ONE*, v. 11, n. 9, p. 1–10, 2016. DOI: https://doi.org/10.1371/journal.pone.0161738

CNT. Logística Urbana: restrições aos caminhões? Brasília: Confederação Nacional de Transportes, 2018.

DABLANC, L. Freight Transport: a key for the new urban economy. World Bank: Washington DC, 2009.

DABLANC, L. Goods transport in large European cities: Difficult to organize, difficult to modernize. *Transportation Research Part A: Policy and Practice*, v. 41, n. 3, p. 280–285, 2007. DOI: https://doi.org/10.1016/j.tra.2006.05.005

DE DOMENICO, M., SOLÉ-RIBALTA, A., COZZO, E., KIVELÄ, M., MORENO, Y., PORTER, M. A., GÓMEZ, S. & ARENAS, A. Mathematical formulation of multilayer networks. *Physical Review X*, v. 3, n. 4, p. 1–15, 2014. DOI: http://dx.doi.org/10.1103/PhysRevX.3.041022

DE DOMENICO, M., SOLÉ-RIBALTA, A., GÓMEZ, S. & ARENAS, A. Navigability of interconnected networks under random failures. *Proceedings of the National Academy of Sciences*, v. 111, n. 23, p. 8351–8356, 2014. DOI: http://dx.doi.org/10.1073/pnas.1318469111

DEBAUCHE, W. Le transport de marchandises dans le centre ville de Liège. Le transport de marchandises dans le centre ville de Liège, *Annexe au Bulletin CRR* n° 66, 2006.

DIAS, T, P, S. Medição de diversidade em redes multiplex : Uma análise de investimento no mercado de ações de energia elétrica. Dissertação – Escola de Engenharia, Universidade Federal de Minas Gerais, 2018.

FERRIS, G. R., HOCHWARTER, W. A., DOUGLAS, C., BLASS, F. R., KOLODINSKY, R. W., & TREADWAY, D. C. Social influence processes in organizations and human resources systems. *In G. R. Ferris & J. J. Martocchio (Eds.), Research in personnel and human resources management*, v. 21., p. 65–127. Elsevier Science/JAI Press, 2002. DOI:

HALU, A; MUKHERJEE, S; BIANCONI, G. Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting network ensembles. *Physical Review E*, v. 89, n. 1, p. 1–11, 2014. DOI: http://dx.doi.org/10.1103/PhysRevE.89.012806

IBGE. Cidades@Belo Horizonte, 2010. Disponível em: < https://cidades.ibge.gov.br/>

JALLER, M., HOLGUÍN-VERAS, J., & HODGE, S. D. Parking in the city: Challenges for freight traffic. *Transportation Research Record*, v. 2379, n. 1, p. 46-56, 2013. DOI: https://doi.org/10.3141/2379-06

JOUBERT, J. W., & MEINTJES, S. Freight Activity Chain Generation Using Complex Networks of Connectivity. *Transportation Research Procedia*, v. 12, 2015, p. 425–435, 2016. DOI: https://doi.org/10.1016/j.trpro.2016.02.078

KALUZA, P., KÖLZSCH, A., GASTNER, M. T. & BLASIUS, B. The complex network of global cargo ship movements. *Journal of the Royal Society Interface*, v. 7, n. 48, p. 1093–103, 2010. DOI:

KANAWATI, R. Multiplex Network Mining: A Brief Survey. *IEEE Intelligent Informatics Bulletin*, v. 16, n. 1, p. 24–27, 2015.

KARADIMAS, N. V., KOLOKATHI, M. A. R. I. A., DEFTERAIOU, G., & LOUMOS, V. A. S. S. I. L. I. Municipal Waste Collection of Large Items Optimized With ArcGIS Network

Analyst. ECMS 2007 – Proceedings of the 21st European Conference on Modelling and Simulation, Prague. DOI: https://doi.org/10.7148/2007-0080

KIVELÄ, M., ARENAS, A., BARTHELEMY, M., GLEESON, J. P., MORENO, Y., & PORTER, M. A. Multilayer networks. *Journal of Complex Networks*, v. 2, n. 3, p. 203–271, 2014. DOI: https://doi.org/10.1093/comnet/cnu016

LEE, K. M., MIN, B., & GOH, K. I. Towards real-world complexity: an introduction to multiplex networks. *European Physical Journal B*, v. 88, n. 2, p. 1-20, 2015. DOI: https://doi.org/10.1140/epjb/e2015-50742-1

LOUREIRO, S. A., BARBOSA, C. L. & LIMA JUNIOR, O. F. Procedimento para localização e alocação de vagas de carga e descarga em centros urbanos. *XXVI Congresso Nacional de Pesquisa em Transporte da Anpet*, p. 1299–1310, 2012.

METZ, J., CALVO, R., SENO, E. R. M., ROMERO, R. A. F. & LIANG, Z. Redes Complexas: Conceitos e Aplicações. *Relatórios Técnicos do ICMC*, 2007.

MOLLGAARD, A., ZETTLER, I., DAMMEYER, J., JENSEN. M. H., LEHMANN, S. & MATHIESEN, J. Measure of Node Similarity in Multilayer Networks. *PLOS ONE*, v. 11, n. 6, p. e0157436, 2016. DOI: https://doi.org/10.1371/journal.pone.0157436

NEWMAN, M. E. J. Networks: An Introduction. Oxford University Press, 2010.

NEWMAN, M. E. The structure and function of complex networks. *Siam Review*, v. 45, n. 2, p. 167–256, 2002. DOI: https://doi.org/10.1137/S003614450342480

NICOSIA, V., BIANCONI, G., LATORA, V. & BARTHELEMY, M. Growing multiplex networks. *Physical Review Letters*, v. 111, n. 5, p. 1–17, 2013. DOI: https://doi.org 10.1103/PhysRevLett.111.058701

OLIVEIRA, L. K., SANTOS, O. R., NÓBREGA, R. A. A., DABLANC, L. & OLIVEIRA, R. L. M. Análise do espraiamento logístico: um estudo para a região metropolitana de Belo Horizonte. *Transportes*, v. 25, n. 4, p. 42-56, 2017. DOI: https://doi.org/10.14295/transportes.v25i4.1214

OLIVEIRA, L.K. Diagnóstico das vagas de carga e descarga para a distribuição urbana de mercadorias: um estudo de caso em Belo Horizonte. *Journal of Transport Literature*, v. 8, n. 1, p. 178–209, 2014. DOI: http://dx.doi.org/10.1590/S2238-10312014000100009

PAGE, S. E. On Diversity and Complexity (2010). Diversity and complexity (pp.16-53) https://doi.org/10.1515/9781400835140.16

PRATA, B; OLIVEIRA, L, K; HOLANDA, T. Locating on-street loading and unloading spaces by means of mixed integer programming. *Transportes*, v. 26, n. 1, p. 16–30, 2018. DOI: https://doi.org/10.14295/transportes.v26i1.1051

ROUTHIER, J. L., TOILIER, F. FRETURB V3: A Policy Oriented Software of Modelling Urban Goods Movement. *Proceedings of the 11th World Conference on Transport Research*, 2007.

SALEHI, M., SHARMA, R., MARZOLLA, M., MAGNANI, M., SIYARI, P. & MONTESI, D. Spreading processes in Multilayer Networks. *IEEE Transactions on Network Science and Engineering*, v. 2, n. 2, p. 65–83, 2015. DOI: https://doi.org/10.1109/TNSE.2015.2425961

SCHIEBER, T. A., CARPI, L., DÍAZ-GUILERA, A., PARDALOS, P. M., MASOLLER, C. & RAVETTI, M. G. Quantification of network structural dissimilarities. *Nature Communications*, v. 8, p. 2–11, 2017. DOI: https://doi.org/10.1038/ncomms13928

SEN, P., DASGUPTA, S., CHATTERJEE, A., SREERAM, P. A., MUKHERJEE, G. MANNA, S. S. Small-world properties of the Indian railway network. *Physical Review E*, v. 67, n. 3, p. 5, 2003. DOI: https://doi.org/10.1103/PhysRevE.67.036106

SILVA, F. O. & FERREIRA, W. R. Periodização e evolução da logística urbana de cargas. *InterEspaço: Revista de Geografia e Interdisciplinaridade*, v. *3*, n. 8, p.142-158, 2017. DOI: http://dx.doi.org/10.18764/2446-6549.v3n8p142-158

STRANO, E., SHAI, S., DOBSON, S., & BARTHELEMY, M. Multiplex networks in metropolitan areas: generic features and local effects. *Journal of The Royal Society Interface*, v. 12, n. 111, p. 20150651, 2015. DOI: https://doi.org/10.1098/rsif.2015.0651

TANIGUCHI, E., THOMPSON, R. G., YAMADA, T. & VAN DUIN, R. City logistics: Network modelling and intelligent transport systems. Pergamon, Oxford, 2001.

VARGA, I. Weighted multiplex network of air transportation. *European Physical Journal B*, v. 89, p. 139, 2016. DOI: https://doi.org/10.1140/epjb/e2016-60887-x

WASSERMAN, S. & FAUST, K. Social network analysis: Methods and applications. Cambridge University Press, 1994.

WATTS, D. J. & STROGATZ, S. H. Collective dynamics of small-world' networks. *Nature*, v. 393, n. 6684, p. 440-442, 1998. DOI: https://doi.org/10.1038/30918

WEITZMAN, M. L. On Diversity. *The Quarterly Journal of Economics*, v. 107, n. 2, p. 363–405, 1992. DOI: https://doi.org/10.2307/2118476

WILSON, M., JANJEVIC, M. & WINKENBACH, M. Modeling a Time-Differentiated Policy for Management of Loading Bays in Urban Areas. *In* 15th World Conference on Transportation Research, Mumbai, 2019.

ZANIN, M., PAPO, D., SOUSA, P. A., MENASALVAS, E., NICCHI, A., KUBIK, E., & BOCCALETTI, S. Combining complex networks and data mining: why and how. *Physics Reports*, v. 635, p. 1-44, 2016. DOI: https://doi.org/10.1016/j.physrep.2016.04.005

ANEXO A – VAGAS DE CARGA E DESCARGA DE BELO HORIZONTE

N° C/D	Endereço	Númer o	LAT	LONG	N° C/D	Endereço	Númer o	LAT	LONG
1	Avenida Afonso Pena	1456	19.925.365	- 43.934872	41	Rua Bahia	966	19.923.574	- 43.937113
2	Avenida Afonso Pena	1394	- 19.924.780	- 43.935243	42	Rua Bahia	450	- 19.918.884	- 43.935846
3	Avenida Afonso Pena	726	- 19.919.669	- 43.938418	43	Rua Cárijos	s/n.º	- 19.918.643	- 43.940579
4	Avenida Afonso Pena	549	- 19.918.219	- 43.939031	44	Rua Carijós	1010	- 19.917.558	- 43.944880
5	Avenida Afonso Pena	1110	19.922.673	- 43.936589	45	Rua Carijós	976	- 19.917.649	- 43.944547
6	Avenida Afonso Pena	398	- 19.917.160	- 43.939937	46	Rua Carijós	108	- 19.919.628	- 43.936533
7	Avenida Afonso Pena	1745	19.927.655	- 43.933189	47	Rua Cárijos	91	- 19.919.950	- 43.936115
8	Avenida Afonso Pena	576	19.920.454	- 43.937965	48	Rua Carijós	849	- 19.917.984	- 43.943194
9	Avenida Afonso Pena	333	- 19.916.834	- 43.939941	49	Rua Carijós	528	- 19.918.654	- 43.940425
10	Avenida Alvares Cabral	200	19.925.342	- 43.936875	50	Rua Carijós	585	- 19.918.569	- 43.940836
11	Avenida Alvares Cabral	440	19.926.526	- 43.939020	51	Rua Curitiba	347	- 19.915.444	- 43.940362
12	Avenida Amazonas	317	- 19.918.806	- 43.937972	52	Rua Curitiba	1022	19.921.502	- 43.942071
13	Avenida Amazonas	1061	19.922.256	- 43.944099	53	Rua Curitiba	1021	19.921.613	- 43.942057
14	Avenida Amazonas	50	- 19.917.441	- 43.935802	54	Rua Curitiba	1333	19.923.874	- 43.942651
15	Avenida Amazonas	151	- 19.918.287	- 43.937014	55	Rua Curitiba	1251	19.923.748	- 43.942649
16	Avenida Augusto de Lima	885	- 19.923.068	- 43.944054	56	Rua Curitiba	709	- 19.918.574	- 43.941192
17	Avenida Bias Fortes	1396	- 19.921.624	- 43.945743	57	Rua Curitiba	683	19.918.335	- 43.941129
18	Avenida Bias Fortes	934	19.925.226	- 43.943501	58	Rua Curitiba	815	- 19.919.809	- 43.941558
19	Avenida Bias Fortes	1451	19.920.492	- 43.946705	59	Rua Curitiba	472	- 19.916.663	- 43.940748
20	Avenida Bias Fortes	1146	- 19.923.734	- 43.944436	60	Rua Curitiba	553	- 19.917.553	- 43.940966
21	Avenida Bias Fortes	776	- 19.926.496	- 43.942701	61	Rua Curitiba	1136	19.922.801	- 43.942422
22	Avenida do Contorno	11424	- 19.915.488	- 43.944455	62	Rua dos Caetés	117	- 19.917.371	- 43.935108
23	Avenida João Pinheiro	33	19.925.665	- 43.936225	63	Rua Espírito Santo	639	19.920.227	- 43.937547
24	Avenida Oiapoque	293	19.913.605	- 43.940115	64	Rua Espírito Santo	593	- 19.919.854	- 43.937435
25	Avenida Oiapoque	177	- 19.913.847	- 43.939114	65	Rua Espírito Santo	341	19.918.053	- 43.936917
26	Avenida Olegário Maciel	474	- 19.918.248	- 43.944042	66	Rua Espírito Santo	1059	19.923.944	- 43.938509
27	Avenida Olegário Maciel	353	- 19.917.666	- 43.943693	67	Rua Espírito Santo	135	19.915.873	- 43.936337
28	Avenida Olegário Maciel	419	- 19.918.406	- 43.943866	68	Rua Espírito Santo	239	- 19.916.774	- 43.936590
29	Avenida Olegário Maciel	642	- 19.919.983	- 43.944469	69	Rua Espírito Santo	467	- 19.919.072	- 43.937170
30	Avenida Olegário Maciel	584	- 19.919.547	- 43.944346	70	Rua Espírito Santo	935	- 19.922.989	- 43.938255
31	Avenida Olegário Maciel	197	- 19.916.306	43.943301	71	Rua Espírito Santo	1209	19.925.280	- 43.938933
32	Avenida Olegário Maciel	113	- 19.919.983	- 43.944469	72	Rua Góias	83	- 19.924.195	- 43.936482
33	Avenida Olegário Maciel	778	- 19.920.606	- 43.944710	73	Rua Góias	22	19.923.822	- 43.936835
34	Avenida Olegário Maciel	735	19.920.221	- 43.944340	74	Rua Goias	310	- 19.925.717	- 43.935682
35	Avenida Olegário Maciel	88	- 19.915.149	- 43.943142	75	Rua Góias	323	- 19.926.280	- 43.935236
36	Rua 21 de Abril	113	- 19.914.105	- 43.940401	76	Rua Goitacazes	734	- 19.921.647	- 43.944020
37	Rua Alagoas	50	- 19.927.419	- 43.934021	77	Rua Goitacazes	598	19.922.016	- 43.942551
38	Rua Bahia	910	- 19.922.995	- 43.936927	78	Rua Goitacazes	647	- 19.921.985	- 43.943127
39	Rua Bahia	1316	- 19.926.457	- 43.937889	79	Rua Goitacazes	103	19.923.272	- 43.937869
40	Rua Bahia	1148	- 19.924.979	- 43.937466	80	Rua Goitacazes	52	19.923.271	- 43.937391

81	Rua Goitacazes	531	- 19.922.285	- 43.941900	121	Rua Rio Grande do Sul	435	- 19.919.864	- 43.945686
82	Rua Goitacazes	223	-	-	122	Rua Rio Grande do Sul	137	-	-
83	Rua Goitacazes	301	19.923.024	43.938971	123	Rua Rio Grande do Sul	481	19.917.028	43.944935
84	Rua Guaicurus	395	19.922.842	43.939753	124	Rua Santa Catarina	86	19.920.183	43.945772
85	Rua Guaicurus	507	19.915.173	43.937310	125	Rua São Paulo	622	19.921.426	43.943452
86	Rua Guaicurus	587	19.914.933	43.938310	126	Rua São Paulo	1115	19.918.995	43.940010
87	Rua Guajajaras	100	19.914.776	43.938967	127	Rua São Paulo	1033	19.923.253	43.941124
88	Rua Guajajaras	1029	19.926.547	43.934685	128	Rua São Paulo	1545	19.922.573	43.940941
89	Rua Guajajaras	1029	19.924.397	43.943589	129	Rua São Paulo	106	19.926.844	43.942066
90		s/n.°	19.924.393	43.943441	130	Rua São Paulo	260	19.914.416	43.938737
	Rua Guajajaras		19.926.135	43.936665				19.915.792	43.939117
91	Rua Guajajaras	450	19.925.663	43.938113	131	Rua São Paulo	360	19.916.534	43.939311
92	Rua Guajajaras	843	19.924.941	43.941552	132	Rua São Paulo	557	19.918.465	43.939853
93	Rua Guajajaras	600	19.925.354	43.939455	133	Rua São Paulo	987	19.922.208	43.940837
94	Rua Guajajaras	771	19.925.069	43.941042	134	Rua São Paulo	1288	19.924.686	43.941633
95	Rua Guarani	121	19.915.978	43.942296	135	Rua São Paulo	1198	19.923.886	43.941314
96	Rua Guarani	115	19.915.881	43.942271	136	Rua Saturnino de Brito	89	19.914.528	43.940983
97	Rua Guarani	403	19.918.343	43.942911	137	Rua Sergipe	120	19.927.503	43.935443
98	Rua Guarani	307	19.917.586	43.942711	138	Rua Sergipe	7	19.926.605	43.935123
99	Rua Guarani	344	19.917.833	43.942894	139	Rua Tamoiós	55	19.920.927	43.936653
100	Rua Guaranis	458	19.918.881	43.943177	140	Rua Tamóios	442	19.919.886	- 43.940422
101	Rua Guaranis	403	19.918.343	- 43.942911	141	Rua Tamóios	367	19.920.232	- 43.939475
102	Rua Guaranis	555	- 19.919.835	- 43.943312	142	Rua Tamóios	615	- 19.919.644	- 43.941917
103	Rua Guaranis	608	19.920.342	- 43.943564	143	Rua Tamóios	570	- 19.919.595	- 43.941620
104	Rua Paulo de Frontin	95	19.914.827	- 43.942170	144	Rua Tamóios	666	19.919.364	- 43.942626
105	Rua Rio de Janeiro	1144	19.924.264	- 43.940100	145	Rua Tamóios	878	- 19.918.815	- 43.944929
106	Rua Rio de Janeiro	47	- 19.914.364	- 43.937283	146	Rua Tamóios	930	- 19.918.724	- 43.945334
107	Rua Rio de Janeiro	211	- 19.916.189	- 43.937838	147	Rua Tamóios	899	19.918.925	- 43.944811
108	Rua Rio de Janeiro	224	- 19.916.105	- 43.937867	148	Rua Timbiras	2069	19.925.813	- 43.943447
109	Rua Rio de Janeiro	700	19.920.392	43.939021	149	Rua Timbiras	1372	19.927.531	- 43.935913
110	Rua Rio de Janeiro	348	19.917.341	- 43.938168	150	Rua Timbiras	1940	19.926.326	- 43.941196
111	Rua Rio de Janeiro	305	- 19.916.843	- 43.937966	151	Rua Timbiras	1248	19.927.852	- 43.934580
112	Rua Rio de Janeiro	839	19.921.625	- 43.939247	152	Rua Tupinambás	639	- 19.917.408	- 43.940312
113	Rua Rio de Janeiro	909	19.922.292	43.939441	153	Rua Tupinambás	662	19.917.355	43.940216
114	Rua Rio de Janeiro	1063	19.923.533	43.939775	154	Rua Tupinambás	486	19.917.719	43.938599
115	Rua Rio de Janeiro	109	19.914.979	- 43.937445	155	Rua Tupinambás	120	19.918.581	43.935246
116	Rua Rio de Janeiro	1169	19.914.979	- 43.940061	156	Rua Tupinambás	190	19.918.434	43.935947
117	Rua Rio de Janeiro	1330	19.924.312	- 43.940593	157	Rua Tupinambás	253	19.918.434	43.936533
118	Rua Rio de Janeiro	1411	19.925.939	- 43.940712	158	Rua Tupinambás	841	19.918.303	43.941879
119	Rua Rio Grande do Sul	35	-	-	159	Rua Tupinambás	330	-	-
120	Rua Rio Grande do Sul	357	19.916.232	43.944689	160	Rua Tupinambás	401	19.918.052	43.937418
-20		557	19.919.099	43.945468			.01	19.917.985	43.937962

163 Run Tupis	161	Rua Tupis	449	- 19.921.166	- 43.941290	201	Rua Alagoas	616	- 19.932.694	- 43.935526
161 Run Tupis	162	Rua Tupis	859	-	-	202	Rua Alagoas	864	-	-
164 Rua Tupis	163	Rua Tupis	75	-	-	203	Rua Alagoas	730	-	-
165 Rua Tupis	164	Rua Tupis	185	-	-	204		s/n.º	-	-
166 Ron Tupis	165	Rua Tupis	303	-	-	205	Rua Antônio de	875	-	-
167	166	Rua Tupis	375	-	-	206	Rua Antônio de	369	-	-
1999/76 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/7776 1999/77776 1999/77776 1999/77776 1999/7777777777777777777777777777777777	167	Avenida Afonso Pena	3111	-	-	207	Rua Antônio de	706	-	-
1996 Avenida Afonso Pena 2724 9.93.6.867 43.927728 200 Rua Bernardo Guimardes 1185 19.930,338 43.935119 171 Avenida Afonso Pena 2149 19.93.382 43.936181 212 Rua Ceará 1599 19.93.6.221 43.935119 172 Avenida Afonso Pena 2149 19.93.382 43.936181 212 Rua Ceará 1599 19.93.6.221 43.936181 173 Avenida Afonso Pena 2336 19.93.223 43.926500 213 Rua Claudo Manoel 713 19.93.5.831 43.929421 174 Avenida Brasil 1475 19.93.0.284 43.933523 215 Rua Fernandes Tourinho 152 19.933.923 43.936310 175 Avenida Brasil 1475 19.93.0.784 43.935324 216 Rua Fernandes Tourinho 152 19.938.249 43.939381 176 Avenida Brasil 1948 19.932.052 43.936304 216 Rua Fernandes Tourinho 157 19.938.268 43.939381 177 Avenida Brasil 1948 19.932.052 43.936304 216 Rua Fernandes Tourinho 284 49.938.81 43.939381 178 Avenida Brasil 5.0				-	-			760	-	-
1996/856 4392/100 1998/856 4392/100	169			-	-	-			-	-
199301081 39935788 211 Run Ceará 1599 1993628 43935191 171	170			-	-				-	-
172 Avenida Afonso Pena 2149 19.932.832 43.930181 173 Avenida Afonso Pena 2336 19.933.932 43.930181 174 Avenida Brasil 1475 19.930.284 33.93025 174 Avenida Brasil 1678 19.930.798 33.933025 175 Avenida Brasil 1678 19.930.798 33.933025 176 Avenida Brasil 1678 19.930.798 33.933025 177 Avenida Brasil 1839 19.932.062 43.93630 177 Avenida Brasil 1948 19.932.138 43.936204 178 Avenida Brasil 1948 19.932.244 43.936830 179 Avenida Brasil 1948 19.932.244 43.936830 179 Avenida Brasil 1948 19.932.244 43.936830 179 Avenida Brasil 1948 19.932.244 43.936830 180 Avenida Cristiovão Colombo 506 19.936.844 43.936534 1818 Avenida Getúlio Vargas 628 19.934.478 43.937735 1818 Avenida Getúlio Vargas 1889 19.937.256 33.93772 183 Avenida Getúlio Vargas 1443 19.938.551 43.936873 1846 Avenida Getúlio Vargas 1443 19.938.551 43.936873 185 Avenida Getúlio Vargas 1443 19.934.871 43.92460 188 Avenida Getúlio Vargas 189 19.935.908 43.936051 188 Avenida Getúlio Vargas 189 19.935.908 43.93673 188 Avenida Getúlio Vargas 189 19.935.908 43.93673 188 Avenida Getúlio Vargas 880 19.935.908 43.937860 188 Avenida Getúlio Vargas 880 19.935.908 43.937860 188 Avenida Getúlio Vargas 880 19.935.908 43.937860 188 Avenida Getúlio Vargas 189 19.935.908 43.937860 188 Avenida Getúlio Vargas 189 19.935.908 43.937860 188 Avenida Getúlio Vargas 189 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 43.937860 19.935.908 4				-	-				-	-
173 Avenida Afonso Pena 2336 1933.923 43.920510 174 Avenida Brasil 1475 19.930.284 33.932541 175 Avenida Brasil 1678 19.930.284 33.932541 176 Avenida Brasil 1678 19.930.285 33.932551 176 Avenida Brasil 1839 19.932.052 33.935630 216 Rua Fernandes Tourinho 472 19.938.268 43.936810 177 Avenida Brasil 1948 19.932.138 33.93254 178 Avenida Brasil 1948 19.932.138 33.93254 179 Avenida Brasil 1948 19.932.524 43.936830 1810 Avenida Gertilio Vargas 628 19.934.478 43.937135 1811 Avenida Gertilio Vargas 1889 19.932.525 33.933772 1832 Avenida Gertilio Vargas 1889 19.935.657 43.930873 1841 Avenida Gertilio Vargas 1443 19.938.551 43.936951 1850 Avenida Gertilio Vargas 1443 19.934.871 43.930973 1851 Avenida Gertilio Vargas 1443 19.934.871 43.930973 1851 Avenida Gertilio Vargas 1443 19.934.871 43.930973 1852 Avenida Gertilio Vargas 1443 19.934.871 43.930973 1853 Avenida Gertilio Vargas 1880 19.935.657 43.930873 1854 Avenida Gertilio Vargas 1880 19.935.657 43.930873 1854 Avenida Gertilio Vargas 1881 19.934.871 43.930973 1855 43.934667 1872 43.934667 1872 43.934678				-	-				-	-
1933.932 43.93930 1949 19.930.284 43.932454 214 Rua Fernandes Tourinho 152 19.939.527 43.93640 175 Avenida Brasil 1678 19.930.798 43.933252 215 Rua Fernandes Tourinho 157 19.932.828 43.936361 176 Avenida Brasil 1948 19.932.138 43.936361 216 Rua Fernandes Tourinho 224 19.938.8268 43.936361 177 Avenida Brasil 1948 19.932.138 43.936361 217 Rua Fernandes Tourinho 224 19.938.8268 43.936361 178 Avenida Brasil 1948 19.932.138 43.936361 218 Rua Gonçalves Días 1218 19.931.338 43.936717 179 Avenida Grátilio Vargas 628 19.935.741 43.937133 220 Rua Gonçalves Días 1242 19.931.338 43.936718 181 Avenida Getilio Vargas 1189 19.937.236 43.933772 222 Rua Inconfidentes 1072 19.935.335 43.936080 183 Avenida Getilio Vargas 1697 19.938.551 43.936737 222 Rua Inconfidentes 87n.* 19.936.139 43.930373 184 Avenida Getilio Vargas 1443 19.938.551 43.936614 223 Rua Inconfidentes 911 19.935.735 43.936818 185 Avenida Getilio Vargas 1443 19.938.551 43.936614 225 Rua Inconfidentes 911 19.935.735 43.936818 186 Avenida Getilio Vargas 120 19.936.993 43.933804 226 Rua Levindo Lopes 333 19.939.00 43.939888 187 Avenida Getilio Vargas 120 19.936.993 43.933804 227 Rua Levindo Lopes 349 19.935.735 43.934816 188 Avenida Getilio Vargas 120 19.936.993 43.933804 228 Rua Levindo Lopes 349 19.935.735 43.934816 19.938.843 19.939.006 43.933804 19.938.843 19.938.843 19.939.006 43.933804 19.938.843 19.939.006 43.933804 19.938.843 19.939.006 43.933804 19.938.843 19.938.843 19.939.006 43.933804 19.938.843 19.939.006 43.933804 19.938.843 19.939.006 43.933804 19.938.843 19.939.528 43.933040 19.938.843 19.939.528 43.9330406 19.938.843 19.938.843 19.938.843 19.938.843 19.938.843 19.938.843 19.938.843 19.938.843 19.938.843 19.938.843 19				19.932.382	43.930181	-			19.935.851	43.929421
175 Avenida Brasil 1678 19.930.798 43.933025 215 Rua Fernandes Tourinho 472 19.938.419 43.930381 176 Avenida Brasil 1948 19.932.052 43.936304 217 Rua Fernandes Tourinho 284 19.938.871 43.937617 177 Avenida Brasil 1948 19.932.534 43.936344 218 Rua Gonçalves Días 1218 19.931.395 43.936617 219 Avenida Cristovão Colombo 556 19.935.744 43.937135 220 Rua Gonçalves Días 1218 19.931.395 43.936617 218 Avenida Getilio Vargas 1189 19.937.255 43.937772 221 Rua Gonçalves Días 1242 19.931.395 43.936918 222 Rua Gonçalves Días 1242 19.931.395 43.936918 222 Rua Gonçalves Días 1242 19.931.395 43.936918 223 Rua Gonçalves Días 1675 19.932.415 43.930917 224 Rua Gonçalves Días 1675 19.932.785 43.936071 225 Rua Gonçalves Días 1675 19.932.785 43.936071 226 Rua Gonçalves Días 1675 19.932.785 43.936071 227 Rua Gonçalves Días 1675 19.932.785 43.936071 228 Rua Inconfidentes 57°° 19.935.357 43.936071 228 Rua Inconfidentes 57°° 19.935.735 43.936071 228 Rua Inconfidentes 57°° 19.935.735 43.936071 226 Rua Gonçalves Días 1675 19.935.735 43.936071 227 Rua Inconfidentes 57°° 19.935.735 43.936071 228 Rua Inconfidentes 57°° 19.935.735 43.936071 228 Rua Inconfidentes 57°° 19.935.735 43.936071 229 Rua Levindo Lopes 330 19.939.702 43.936071 229 Rua Levindo Lopes 34.936071 19.937.487 43.934367 228 Rua Inconfidentes 34.936071 34.934371 34.9				19.933.923	43.929590				19.933.952	43.931546
1993,938 1993,0303 1993,				19.930.284	43.932454				19.939.257	43.936040
1993, 180				19.930.798	43.933925				19.938.419	43.939381
19.93.2.18 4.936.84 4.936.84 19.93.2.18 4.936.84 19.93.2.18 4.936.84 19.93.2.18 4.936.84 19.93.2.18 19.93.3.95 4.936.81 19.9				19.932.052	43.935630				19.938.268	43.940501
1992-24 43-93-68.0 1993-13-95 43-93-617 1993-13-95 1993				19.932.138	43.936294		Rua Fernandes Tourinho		19.938.871	43.937617
1993-138 4393-0278 1393-138 4393-0278 1293-138 1393-0288 1393-02	178	Avenida Brasil	s/n.º	19.932.524	43.936836	-	Rua Gonçalves Dias	1218	19.931.395	43.936117
181	179	Avenida Cristovão Colombo	506	19.936.384	43.936534	219	Rua Gonçalves Dias		19.931.358	43.936278
19934.478 43.929280 19935.2786 43.930977 222 Rua Inconfidentes 1072 19.935.352 43.9308080 183 Avenida Getúlio Vargas 1697 19.939.652 43.938073 223 Rua Inconfidentes 911 19.935.352 43.930307 224 Rua Inconfidentes 911 19.935.735 43.930307 225 Rua Inconfidentes 911 19.935.735 43.934816 225 Rua Inconfidentes 911 19.935.735 43.934816 226 Rua Levindo Lopes 333 19.937.026 43.99186 226 Rua Levindo Lopes 333 19.939.009 43.939888 187 Avenida Getúlio Vargas 880 19.935.908 43.931687 227 Rua Levindo Lopes 331 19.939.009 43.939888 188 Avenida Getúlio Vargas 1220 19.936.993 43.933830 228 Rua Levindo Lopes 384 19.939.222 43.940085 229 Rua Levindo Lopes 384 19.939.222 43.940088 229 Rua Levindo Lopes 384 39.93227 389.8227 389.8228 389.8229	180	Avenida Cristovão Colombo	525	19.935.741	43.937135	220	Rua Gonçalves Dias	774	19.932.415	43.931988
1993/3/256 43/936081 1993/3/256 43/936081 183 Avenida Getúlio Vargas 823 19/935.657 43/936087 224 Rua Inconfidentes 911 19/935.735 43/936081 185 Avenida Getúlio Vargas 1443 19/938.551 43/936051 225 Rua Inconfidentes 302 19/937.026 43/92186 186 Avenida Getúlio Vargas 641 19/934.871 43/929496 226 Rua Levindo Lopes 333 19/939.000 43/939888 187 Avenida Getúlio Vargas 880 19/935.908 43/931867 227 Rua Levindo Lopes 391 19/939.521 43/940035 188 Avenida Getúlio Vargas 1220 19/936.993 43/933830 228 Rua Levindo Lopes 384 19/939.222 43/94068 189 Avenida João Pinheiro 515 19/929.456 43/937220 229 Rua Levindo Lopes 10 19/936.027 43/930227 190 Avenida João Pinheiro 580 19/929.24 43/937595 231 Rua Paraíba 1403 19/938.745 43/934353 192 Avenida João Pinheiro 667 19/929.948 43/937595 231 Rua Paraíba 1403 19/938.745 43/934351 193 Rua Alagoas 181 19/928.453 43/934176 234 Rua Paraíba 181 19/935.736 43/93305 196 Rua Alagoas 1449 19/935.736 43/937325 236 Rua Paraíba 1650 19/935.738 43/93365 197 Rua Alagoas 1344 19/935.736 43/933735 237 Rua Paraíba 1650 19/935.738 43/93365 197 Rua Alagoas 1344 19/935.736 43/937325 237 Rua Paraíba 1650 19/935.738 43/93365 197 Rua Alagoas 1344 19/935.736 43/937325 237 Rua Paraíba 1650 19/935.738 43/93365 197 Rua Alagoas 1344 19/935.538 43/937325 237 Rua Paraíba 1650 19/935.736 43/93365 19/935.736 43/93365 237 Rua Paraíba 1650 19/935.736 43/93365 197 Rua Alagoas 1344 19/935.525 43/937313 238 Rua Paraíba 1650 19/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365 18/935.736 43/93365	181	Avenida Getúlio Vargas	628	19.934.478	43.929280	221	Rua Gonçalves Dias	655	19.932.788	43.930917
19,39,50,52 43,938044 19,936,139 43,938037 224 Rua Inconfidentes 911 19,935,735 43,934316 185 Avenida Getúlio Vargas 1443 19,938,551 43,936051 225 Rua Inconfidentes 302 19,937,026 43,929186 186 Avenida Getúlio Vargas 641 19,934,871 43,929496 226 Rua Levindo Lopes 333 19,939,009 43,939888 187 Avenida Getúlio Vargas 880 19,935,908 43,931687 227 Rua Levindo Lopes 391 19,939,521 43,940035 228 Rua Levindo Lopes 349,939,521 43,940035 228 Rua Levindo Lopes 349,939,522 43,940068 249,94068	182	Avenida Getúlio Vargas	1189	19.937.256	43.933772	222	Rua Inconfidentes	1072	19.935.352	43.936080
19935.657 43.930873 225 Rua Inconfidentes 302 19.937.735 43.934816	183	Avenida Getúlio Vargas	1697	19.939.652	- 43.938044	223	Rua Inconfidentes	s/n.°	19.936.139	43.933037
19,938,551 43,936051 226 Rua Levindo Lopes 333 19,939,009 43,939888 187 Avenida Getúlio Vargas 880 19,935,908 43,931687 227 Rua Levindo Lopes 391 19,935,521 43,940035 188 Avenida Getúlio Vargas 1220 19,936,993 43,933830 228 Rua Levindo Lopes 384 19,939,222 43,940068 189 Avenida João Pinheiro 515 19,929,456 43,937220 229 Rua Levindo Lopes 10 19,936,027 43,939227 190 Avenida João Pinheiro 580 19,928,648 43,937237 230 Rua Levindo Lopes 171 19,937,487 43,93466 191 Avenida João Pinheiro 650 19,929,922 43,937595 231 Rua Paraíba 1403 19,938,745 43,934353 192 Avenida João Pinheiro 667 19,929,948 43,937360 232 Rua Paraíba 1323 19,939,068 43,934381 193 Rua Almorés 1017 19,928,453 43,933691 233 Rua Paraíba 1323 19,939,068 43,934381 194 Rua Alagoas 181 19,928,453 43,935123 235 Rua Paraíba 1050 19,935,738 43,933509 195 Rua Alagoas 474 19,931,275 43,935123 235 Rua Paraíba 1050 19,935,738 43,933045 197 Rua Alagoas 1449 19,935,5736 43,937325 236 Rua Pernambuco 207 19,929,157 43,933691 198 Rua Alagoas 1314 19,938,525 43,937131 238 Rua Pernambuco 593 19,932,326 43,934710 199 Rua Alagoas 315 19,929,716 43,934587 239 Rua Pernambuco 909 19,935,219 43,934710 200 Rua Alagoas 315 19,929,716 43,934587 239 Rua Pernambuco 909 19,935,219 43,934710 200 Rua Alagoas 315 19,929,716 43,934587 239 Rua Pernambuco 909 19,935,219 43,934710 200 Rua Alagoas 315 19,929,716 43,934587 230 Rua Pernambuco 909 19,935,219 43,934710 200 Rua Alagoas 315 19,929,716 43,934587 230 Rua Pernambuco 909 19,935,219 43,934710 200 Rua Alagoas 315 19,929,716 43,934587 230 Rua Pernambuco 909 19,935,219 43,934710 230 Rua Pernambuco 909 19,935,219 43,934710 230 Rua Pernambuco 909 19,935,219 43,934710 23	184	Avenida Getúlio Vargas	823	19.935.657	43.930873	224	Rua Inconfidentes	911	19.935.735	43.934816
19.934.871 43.929496 19.935.908 43.931687 227 Rua Levindo Lopes 391 19.939.009 43.939888 19.935.908 43.931687 228 Rua Levindo Lopes 384 19.939.222 43.94068 189 Avenida João Pinheiro 515 19.929.456 43.937220 229 Rua Levindo Lopes 10 19.936.027 43.939227 43.939227 43.939227 43.937237 230 Rua Levindo Lopes 171 19.937.487 43.939466 19.929.922 43.937595 231 Rua Paraíba 1403 19.938.745 43.934353 192 Avenida João Pinheiro 660 19.929.922 43.937360 232 Rua Paraíba 1323 19.939.068 43.934381 193 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 19.938.745 43.933606 195 Rua Alagoas 1005 19.935.736 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1049 19.935.736 43.93525 43.937325 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1314 19.938.525 43.937325 237 Rua Pernambuco 593 19.932.226 43.933892 199 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.2	185	Avenida Getúlio Vargas	1443	19.938.551	- 43.936051	225	Rua Inconfidentes	302	- 19.937.026	- 43.929186
187 Avenida Getulio Vargas 880 19.935.908 43.931687 227 Rua Levindo Lopes 391 19.939.521 43.940035 188 Avenida Getúlio Vargas 1220 19.936.993 43.933830 228 Rua Levindo Lopes 384 19.939.222 43.940068 189 Avenida João Pinheiro 515 19.929.456 43.937220 229 Rua Levindo Lopes 10 19.936.027 43.939227 190 Avenida João Pinheiro 580 19.929.484 43.937237 230 Rua Levindo Lopes 171 19.937.487 43.939466 191 Avenida João Pinheiro 650 19.929.922 43.937595 231 Rua Paraíba 1403 19.938.745 43.93453 192 Avenida João Pinheiro 607 19.929.948 43.937360 232 Rua Paraíba 1323 19.939.068 43.934381 193 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 811 19.934.461 43.933360 195 Rua Alagoas	186	Avenida Getúlio Vargas	641	- 19.934.871	- 43.929496	226	Rua Levindo Lopes	333	19.939.009	- 43.939888
189 Avenida João Pinheiro 515 19.929.456 43.937220 229 Rua Levindo Lopes 10 19.936.027 43.939227 190 Avenida João Pinheiro 580 19.928.648 43.937237 230 Rua Levindo Lopes 171 19.937.487 43.939466 191 Avenida João Pinheiro 650 19.929.922 43.937595 231 Rua Paraíba 1403 19.938.745 43.934353 192 Avenida João Pinheiro 607 19.929.948 43.937360 232 Rua Paraíba 1323 19.939.068 43.934381 193 Rua Aimorés 1017 19.929.512 43.933691 233 Rua Paraíba 811 19.934.461 43.933126 194 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 966 19.935.724 43.933606 195 Rua Alagoas 1705 19.935.736 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.935123 236 Rua Paraíba 1050 19.935.738 43.933509 197 Rua Alagoas 1449 19.935.525 43.937113 238 Rua Pernambuco 773 19.933.667 43.934285 198 Rua Alagoas 1314 19.938.525 43.937113 238 Rua Pernambuco 909 19.935.219 43.933710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710	187	Avenida Getúlio Vargas	880	19.935.908	1	227	Rua Levindo Lopes	391	19.939.521	
190 Avenida João Pinheiro 580 19.928.648 43.937227 230 Rua Levindo Lopes 171 19.937.487 43.939466 191 Avenida João Pinheiro 650 19.929.922 43.937595 231 Rua Paraíba 1403 19.938.745 43.934353 192 Avenida João Pinheiro 607 19.929.948 43.937360 232 Rua Paraíba 1323 19.939.068 43.934381 193 Rua Aimorés 1017 19.929.512 43.933691 233 Rua Paraíba 811 19.934.461 43.933126 194 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 966 19.935.724 43.933606 195 Rua Alagoas 474 19.931.275 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.936216 236 Rua Pernambuco 207 19.932.356 43.933495 198 Rua Alagoas 1314 19.938.525	188	Avenida Getúlio Vargas	1220	19.936.993	- 43.933830	228	Rua Levindo Lopes	384	19.939.222	- 43.940068
190 Avenida João Pinheiro 580 19.928.648 43.937237 230 Rua Levindo Lopes 171 19.937.487 43.939466 191 Avenida João Pinheiro 650 19.929.922 43.937595 231 Rua Paraíba 1403 19.938.745 43.934353 192 Avenida João Pinheiro 607 19.929.948 43.937360 232 Rua Paraíba 1323 19.939.068 43.934381 193 Rua Aimorés 1017 19.929.512 43.933691 233 Rua Paraíba 811 19.934.461 43.933126 194 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 966 19.935.724 43.933606 195 Rua Alagoas 474 19.931.275 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.93426 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1314 19.938.525<	189	Avenida João Pinheiro	515	19.929.456	43.937220	229	Rua Levindo Lopes	10	19.936.027	43.939227
191 Avenida João Pinheiro 650 19.929.922 43.937595 231 Rua Paraíba 1403 19.938.745 43.934353 192 Avenida João Pinheiro 607 19.929.948 43.937360 232 Rua Paraíba 1323 19.939.068 43.934381 193 Rua Aimorés 1017 19.929.512 43.933691 233 Rua Paraíba 811 19.934.461 43.933126 194 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 966 19.935.724 43.933606 195 Rua Alagoas 474 19.931.275 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.936216 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1344 19.938.525 43.937113 238 Rua Pernambuco 773 19.932.326 43.933892 199 Rua Alagoas 315 19.929.716	190	Avenida João Pinheiro	580	-	-	230	Rua Levindo Lopes	171	-	43.939466
192 Avenida João Pinheiro 607 19.929.948 43.937360 232 Rua Paraíba 1323 19.939.068 43.934381 193 Rua Aimorés 1017 19.929.512 43.933691 233 Rua Paraíba 811 19.934.461 43.933126 194 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 966 19.935.724 43.933606 195 Rua Alagoas 474 19.931.275 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.936216 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1449 19.939.558 43.937325 237 Rua Pernambuco 773 19.933.667 43.934285 198 Rua Alagoas 1314 19.938.525 43.937113 238 Rua Pernambuco 593 19.932.326 43.933892 199 Rua Alagoas 315 19.929.716 43	191	Avenida João Pinheiro	650	-	-	231	Rua Paraíba	1403	-	-
193 Rua Aimorés 1017 19.929.512 43.933691 233 Rua Paraíba 811 19.934.461 43.933126 194 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 966 19.935.724 43.933606 195 Rua Alagoas 474 19.931.275 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.936216 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1449 19.938.525 43.937325 237 Rua Pernambuco 773 19.933.667 43.934285 198 Rua Alagoas 1314 19.938.525 43.937113 238 Rua Pernambuco 593 19.932.326 43.933892 199 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587<	192	Avenida João Pinheiro	607	-	-	232	Rua Paraíba	1323	-	- 43.934381
194 Rua Alagoas 181 19.928.453 43.934176 234 Rua Paraíba 966 19.935.724 43.933606 195 Rua Alagoas 474 19.931.275 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.936216 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1449 19.939.558 43.937325 237 Rua Pernambuco 773 19.933.667 43.934285 198 Rua Alagoas 1314 19.938.525 43.937113 238 Rua Pernambuco 593 19.932.326 43.933892 199 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 315 19.929.716 43.934587 230 Rua Piauí 1884	193	Rua Aimorés	1017	-	-	233	Rua Paraíba	811	-	-
195 Rua Alagoas 474 19.931.275 43.935123 235 Rua Paraíba 1050 19.935.738 43.933509 196 Rua Alagoas 1005 19.935.736 43.936216 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1449 19.939.558 43.937325 237 Rua Pernambuco 773 19.933.667 43.934285 198 Rua Alagoas 1314 19.938.525 43.937113 238 Rua Pernambuco 593 19.932.326 43.933892 199 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 601 240 Rua Piauf 1884 240 Rua Piauf	194	Rua Alagoas	181	-	-	234	Rua Paraíba	966	-	-
196 Rua Alagoas 1005 19.935.736 43.936216 236 Rua Pernambuco 207 19.929.157 43.933045 197 Rua Alagoas 1449 19.939.558 43.937325 237 Rua Pernambuco 773 19.933.667 43.934285 198 Rua Alagoas 1314 19.938.525 43.937113 238 Rua Pernambuco 593 19.932.326 43.933892 199 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 601 7 240 Rua Piauf 1884 7 7	195	Rua Alagoas	474	-	-	235	Rua Paraíba	1050	-	-
197 Rua Alagoas 1449 19.939.558 43.937325 237 Rua Pernambuco 773 19.933.667 43.934285 198 Rua Alagoas 1314 19.938.525 43.937113 238 Rua Pernambuco 593 19.932.326 43.933892 199 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710 200 Rua Alagoas 601 240 Rua Piauf 1884 1884 1884	196	Rua Alagoas	1005	-	-	236	Rua Pernambuco	207	-	-
198 Rua Alagoas 1314	197	Rua Alagoas	1449	-	-	237	Rua Pernambuco	773	-	-
199 Rua Alagoas 315 19.929.716 43.934587 239 Rua Pernambuco 909 19.935.219 43.934710	198	Rua Alagoas	1314	-	-	238	Rua Pernambuco	593	-	-
200 Rus Alagons 601 - 240 Rus Piauf 1884	199	Rua Alagoas	315	-	-	239	Rua Pernambuco	909	-	-
10 047 505 1 /3 03537/0 1	200	Rua Alagoas	601	19.929.710	- 43.935379	240	Rua Piauí	1884	19.933.219	- 43.928753

241	Rua Prof. Morais	169	- 19.934.546	- 43.930372	281	Avenida Brasil	653	- 19.926.601	- 43.925802
242	Rua Prof. Morais	505	-	-	282	Avenida Brasil	777	-	-
243	Rua Rio Grande do Norte	435	19.937.492 - 19.928.733	43.931196 - 43.930154	283	Avenida Brasil	1334	19.927.121 - 19.929.405	43.926827 - 43.931347
244	Rua Santa Rita Durão	s/n.º	19.928.733	- 43.929655	284	Avenida Brasil	1071	19.929.403	- 43.929198
245	Rua Santa Rita Durão	586	19.935.498	- 43.930242	285	Avenida Carandaí	957	19.928.498	- 43.931736
246	Rua Santa Rita Durão	1214	19.933.746	- 43.937317	286	Avenida Carandaí	740	19.927.423	- 43.929227
247	Rua Santa Rita Durão	945	19.934.529	- 43.934465	287	Avenida Carandaí	176	19.929.038	- 43.924118
248	Rua Santa Rita Durão	1078	19.934.073	- 43.935922	288	Avenida Carandaí	171	19.929.293	- 43.924112
249	Rua Santa Rita Durão	985	19.934.432	43.934876	289	Avenida Carandaí	897	19.927.649	43.930806
250	Rua Santa Rita Durão	1263	19.933.746	43.937759	290	Avenida Carandaí	442	19.928.427	43.926658
251	Rua Sergipe	790	19.933.746	43.937197	291	Avenida Carandaí	737	19.928.036	- 43.929198
252	Rua Sergipe	1087	19.935.877	- 43.937682	292	Avenida Carandaí	840	19.927.626	- 43.930137
253	Rua Sergipe	312	19.929.422	43.936009	293	Avenida Getúlio Vargas	54	19.931.906	- 43.924605
254	Rua Sergipe	1318	- 19.937.924	- 43.938343	294	Avenida Getúlio Vargas	216	- 19.932.746	- 43.926059
255	Rua Sergipe	1199	19.936.886	- 43.937955	295	Avenida Getúlio Vargas	456	- 19.933.675	- 43.927868
256	Rua Sergipe	1170	- 19.936.618	- 43.938006	296	Avenida Getúlio Vargas	225	19.932.852	- 43.925886
257	Rua Tomé de Souza	932	- 19.936.844	- 43.935294	297	Avenida Getúlio Vargas	367	19.933.442	- 43.926921
258	Rua Tomé de Souza	1140	19.936.337	- 43.937433	298	Avenida Pasteur	89	19.926.808	- 43.929492
259	Rua Tomé de Souza	882	- 19.936.961	- 43.934830	299	Avenida Prof. Alfredo Balena	s/n.°	19.926.416	- 43.931484
260	Rua Tomé de Souza	273	19.938.484	- 43.929056	300	Rua Aimorés	475	19.930.664	- 43.928917
261	Rua Tomé de Souza	616	- 19.937.641	- 43.932149	301	Rua Aimorés	357	- 19.930.914	- 43.927883
262	Rua Tomé de Souza	493	- 19.937.995	- 43.931018	302	Rua Aimorés	81	- 19.931.613	- 43.925061
263	Alameda Ezequiel Dias	345	19.924.562	- 43.931822	303	Rua Aimorés	20	- 19.931.711	- 43.924506
264	Avenida Bernardo Monteiro	1543	19.932.122	- 43.929680	304	Rua Aimorés	131	- 19.931.476	- 43.925697
265	Avenida Bernardo Monteiro	1009	- 19.928.778	- 43.928669	305	Rua Aimorés	231	19.931.229	- 43.926523
266	Avenida Bernardo Monteiro	1428	19.932.021	- 43.929642	306	Rua Aimorés	629	19.930.317	- 43.930399
267	Avenida Bernardo Monteiro	1237	- 19.930.392	- 43.929118	307	Rua Alvares Maciel	670	- 19.923.524	- 43.925850
268	Avenida Bernardo Monteiro	1425	- 19.931.127	- 43.929406	308	Rua Alvares Maciel	331	- 19.924.343	- 43.922622
269	Avenida Bernardo Monteiro	918	- 19.929.047	- 43.929044	309	Rua Alvares Maciel	356	- 19.924.263	- 43.922959
270	Avenida Bernardo Monteiro	735	19.925.855	43.927905	310	Rua Alvares Maciel	490	19.923.907	43.924276
271	Avenida Bernardo Monteiro	893	19.927.126	- 43.928271	311	Rua Bernardo Guimarães	358	19.932.009	- 43.928275
272	Avenida Brasil	883	19.927.368	- 43.927572	312	Rua Ceará	620	- 19.926.697	- 43.926937
273	Avenida Brasil	724	19.926.682	- 43.926448	313	Rua Ceará	1140	- 19.931.169	- 43.928138
274	Avenida Brasil	529	19.926.066	- 43.924842	314	Rua Ceará	1089	19.930.725	- 43.928007
275	Avenida Brasil	125	19.924.228	- 43.921585	315	Rua Ceará	999	19.930.129	- 43.927779
276	Avenida Brasil	300	- 19.924.759	43.923000	316	Rua Ceará	238	19.923.190	- 43.925965
277	Avenida Brasil	112	19.923.938	43.921362	317	Rua Ceará	460	19.925.212	- 43.926529
278	Avenida Brasil	456	19.925.557	43.924408	318	Rua Claudio Manoel	90	19.935.194	- 43.926194
279	Avenida Brasil	343	19.925.147	43.923210	319	Rua Claudio Manoel	153	19.935.114	- 43.926622
280	Avenida Brasil	920	19.927.462	43.927854	320	Rua Domingos Vieira	625	19.922.037	43.926685

321	Rua Domingos Vieira	120	- 19.923.302	- 43.921479	361	Rua Ulhoa Cintra	50	- 19.922.542	- 43.921968
322	Rua Domingos Vieira	319	19.922.746	43.923732	362	Avenida Alvares Cabral	1600	19.932.507	- 43.949817
323	Rua Domingos Vieira	481	19.922.418	- 43.925271	363	363 Avenida Augusto de Lima		19.932.307	- 43.954723
324	Rua dos Otoni	4	19.927.475	- 43.920396	364	Avenida Augusto de Lima	1833	19.920.768	- 43.953607
325	Rua dos Otoni	660	19.927.473	- 43.926446	365	Avenida Augusto de Lima	1416	19.920.708	- 43.949950
326	Rua dos Otoni	350	19.925.944	- 43.923594	366	Avenida Augusto de Lima	1308	19.921.420	- 43.949083
327	Rua dos Otoni	218	19.926.934	- 43.922657	367	Avenida Augusto de Lima	1323	19.921.862	- 43.949220
328	Rua dos Otoni	883	19.925.455	- 43.928819	368	Avenida Augusto de Lima	1117	19.921.802	- 43.947445
329	Rua Gonçalves Dias	332	19.923.433	- 43.928255	369	Avenida Augusto de Lima	1168	19.922.243	- 43.947817
330	Rua Gonçalves Dias	146	19.933.822	- 43.926265	370	Avenida Augusto de Lima	1578	19.921.934	- 43.951351
331	Rua Gonçalves Dias	60	19.934.077	- 43.925561	371	Avenida Augusto de Lima	166	19.924.422	- 43.937660
332	Rua Grão Pará	220	19.923.455	- 43.921960	372	Avenida Augusto de Lima	1854	19.924.422	- 43.953724
333	Rua Grão Pará	185	19.923.199	- 43.921796	373	Avenida Augusto de Lima	1756	19.920.698	- 43.952926
334	Rua Grão Pará	984	19.923.199	- 43.923888	374	Avenida Augusto de Lima	2000	19.920.038	- 43.954984
335	Rua Grão Pará	21	-	-	375	Avenida Augusto de Lima	1904	-	-
336	Rua Grão Pará	424	19.922.164 - 19.925.354	43.921454 - 43.922446	376	Avenida Barbacena	200	19.920.434 - 19.920.368	43.954081 - 43.955515
337	Rua Manaus	224	-	-	377	Avenida Barbacena	70	-	-
338	Rua Manaus	373	19.924.307 - 19.925.633	43.920799	378	Avenida Barbacena	999	19.919.271	43.956252
339	Rua Manaus	752	-	43.921036	379	Avenida Barbacena	242	19.926.155	43.951614
340	Rua Maranhão	1162	19.929.023	43.922105	380	Avenida Barbacena	509	19.920.738	43.955266
341	Rua Maranhão	36	19.931.176	43.925432	381	Avenida Barbacena	333	19.922.577	43.953847
342	Rua Maranhão	1045	19.921.884 - 19.930.199	43.922853	382	Avenida Olegário Maciel	1801	19.921.302 - 19.929.817	43.954645 - 43.946973
343	Rua Maranhão	230	19.930.199	43.925035 - 43.923394	383	Avenida Olegário Maciel	1206	19.929.817	- 43.945733
344	Rua Padre Marinho	329	19.925.607	-	384	Avenida Olegário Maciel	1758	19.924.373	-
345	Rua Padre Marinho	510	19.923.607	43.922972 - 43.924972	385	Avenida Olegário Maciel	2250	19.929.341	43.947099 - 43.948245
346	Rua Padre Marinho	175	19.925.864	- 43.921789	386	Avenida Olegário Maciel	1288	19.935.378	- 43.945909
347	Rua Padre Marinho	9	19.926.268	- 43.920165	387	Avenida Olegário Maciel	1177	19.923.048	- 43.945419
348	Rua Padre Marinho	220	19.925.741	- 43.921949	388	Rua Aimorés	2832	19.925.171	- 43.950890
349	Rua Padre Rolim	481	19.927.440	43.925987	389	Rua Aimorés	2578	19.925.966	- 43.947779
350	Rua Padre Rolim	249	19.927.987	- 43.923750	390	Rua Aimorés	3520	19.923.593	43.957363
351	Rua Padre Rolim	157	19.927.987	-	391	Rua Alvarenga Peixoto	1132	19.929.407	-
352	Rua Padre Rolim	15	19.928.137	43.923022 - 43.921434	392	Rua Alvarenga Peixoto	1207	19.929.407	43.949508 - 43.950477
353	Rua Padre Rolim	379	19.928.399	- 43.924806	393	Rua Alvarenga Peixoto	1325	19.929.045	- 43.951518
354	Rua Padre Rolim	815	19.927.733	- 43.928813	394	Rua Araguari	801	19.929.043	- 43.949816
355	Rua Piauí	s/nº	19.933.242	43.927323	395	Rua Araguari	358	19.924.931	- 43.948915
356	Rua Piauí	69	19.922.102	- 43.924268	396	Rua Araguari	1111	19.927.621	- 43.950559
357	Rua Rio Grande do Norte	650	19.922.102	- 43.930813	397	Rua Araguari	475	19.927.021	- 43.949103
358	Rua Rio Grande do Norte	162	19.930.077	- 43.929750	398	Rua Araguari	1453	19.922.271	- 43.951358
359	Rua Timbiras	s/nº	19.928.555	- 43.932103	399	Rua Araguari	1633	19.932.163	- 43.951798

401	Rua Araguari	630	- 19.923.573	- 43.949503	441	Rua Rio Grande do Sul	s/n.º	19.928.205	- 43.948014
402	Rua Bernardo Guimarães	2990	19.926.009	- 43.952814	442	Rua Rodrigues Caldas	49	19.932.135	- 43.949592
403	Rua Bernardo Guimarães	2598	19.920.009	- 43.948720	443	Rua Rodrigues Caldas	752	19.932.133	- 43.956508
404	Rua Coelho de Souza	80	19.933.554	43.949813	444	Rua Tenente Brito Melo	264	19.920.045	43.954123
405	Rua Dias Adorno	347	19.932.631	43.951189	445	Rua Tenente Brito Melo	1253	19.927.291	43.955980
406	Rua dos Guajajaras	1413	19.923.474	43.947329	446	Rua Timbiras	2645	19.924.759	- 43.947778
407	Rua dos Guajajaras	1722	19.922.804	43.949936	447	Rua Timbiras	2624	19.924.687	43.947601
408	Rua dos Guajajaras	2147	19.921.911	43.953968	448	Rua Timbiras	3156	19.923.576	43.952163
409	Rua dos Guajajaras	1522	19.923.305	- 43.947892	449	Rua Timbiras	3642	19.922.337	- 43.957074
410	Rua dos Guajajaras	2019	19.922.286	- 43.952483	450	Rua Timbiras	2800	19.924.335	- 43.949051
411	Rua dos Guajajaras	2429	- 19.921.195	- 43.956994	451	Rua Timbiras	2852	- 19.924.232	- 43.949445
412	Rua Felipe dos Santos	s/n.º	19.933.948	- 43.949486	452	Rua Timbiras	s/n.°	- 19.924.134	- 43.950017
413	Rua Felipe dos Santos	760	- 19.934.211	- 43.947925	453	Rua Timbiras	3057	19.923.904	- 43.951284
414	Rua Gonçalves Dias	3183	19.927.036	- 43.954202	454	Rua Timbiras	2523	19.924.967	- 43.946903
415	Rua Gonçalves Dias	2553	- 19.928.407	- 43.948769	455	Rua Timbiras	2473	19.925.048	- 43.946569
416	Rua Juiz de Fora	231	- 19.919.973	- 43.952612	456	Rua Uberaba	335	- 19.921.341	- 43.955756
417	Rua Juiz de Fora	385	- 19.921.314	- 43.952949	457	Rua Uberaba	780	19.926.396	- 43.957228
418	Rua Juiz de Fora	544	- 19.922.107	- 43.953302	458	Rua Uberaba	418	- 19.921.745	- 43.955981
419	Rua Juiz de Fora	1257	- 19.928.737	- 43.954995	459	Avenida Álvares Cabral	1316	- 19.930.455	- 43.946299
420	Rua Martim de Carvalho	105	- 19.931.152	- 43.948476	460	Avenida Álvares Cabral	1200	- 19.929.816	- 43.945131
421	Rua Martim de Carvalho	273	- 19.930.211	- 43.952094	461	Avenida Álvares Cabral	1345	- 19.930.774	- 43.946331
422	Rua Martim de Carvalho	135	- 19.931.093	- 43.948719	462	Avenida Bias Fortes	216	- 19.930.979	- 43.939866
423	Rua Matias Cardoso	339	19.932.254	- 43.954415	463	Avenida Bias Fortes	837	19.926.565	- 43.942922
424	Rua Mato Grosso	643	19.923.411	43.948025	464	Avenida Bias Fortes	955	19.925.665	- 43.943485
425	Rua Mato Grosso	527	19.922.517	- 43.947765	465	Rua Aimorés	1862	19.927.441	- 43.941538
426	Rua Mato Grosso	936	19.926.226	- 43.948854	466	Rua Aimorés	1697	19.927.968	43.940021
427	Rua Mato Grosso	367	19.921.343	43.947446	467	Rua Aimorés	2246	19.926.641	43.945022
428	Rua Mato Grosso	1037	19.927.232	43.949056	468	Rua Alvarenga Peixoto	295	19.931.469	- 43.941610
429	Rua Ouro Preto	1068	19.927.317	- 43.951974	469	Rua Alvarenga Peixoto	563	19.930.888	- 43.943869
430	Rua Ouro Preto	340	19.920.842	43.950201	470	Rua Alvarenga Peixoto	608	19.930.687	43.944394
431	Rua Ouro Preto	301	19.920.499	43.949983	471	Rua Antônio Aleixo	133	19.934.354	43.940541
432	Rua Ouro Preto	s/n.º	19.922.022	43.950464	472	Rua Antônio Aleixo	278	19.933.778	43.942552
433	Rua Ouro Preto	789	19.925.015	43.951226	473	Rua Antônio Aleixo	591	19.933.069	43.945590
434	Rua Ouro Preto	1500	19.932.612	43.953424	474	Rua Antônio Aleixo	331	19.933.771	43.943067
435	Rua Ouro Preto	655	19.923.561	43.950838	475	Rua Antônio de Albuquerque	1607	19.935.638	43.945726
436	Rua Paracatu	282	19.920.301	43.951430	476	Rua Antônio de Albuquerque	1135	19.936.671	43.941755
437	Rua Paracatu	700	19.923.836	43.952386	477	Rua Antônio de Albuquerque	1354	19.936.204	43.943232
438	Rua Rio Grande do Sul	634	19.921.396	43.946217	478	Rua Bahia	s/n.°	19.932.707	43.939554
439	Rua Rio Grande do Sul	1039	19.924.961	43.947058	479	Rua Bahia	1600	19.928.435	43.938477
440	Rua Rio Grande do Sul	1179	19.926.207	43.947391	480	Rua Bahia	1700	19.929.284	43.938702

481	Rua Bahia	1816	- 19.930.257	- 43.939011	521	Rua Rio de Janeiro	1750	19.929.853	- 43.941649
482	Rua Bahia	2411	19.935.404	- 43.940272	522	Rua Rio de Janeiro	2341	19.934.743	- 43.942866
483	Rua Barbara Heliodora	34	19.933.404	- 43.944501	523	23 Rua Rio de Janeiro		19.934.743	- 43.941743
484	Rua Bernardo Guimarães	2015	19.928.336	43.943842	524	Rua Rio de Janeiro	2107	19.932.904	43.942346
485	Rua Bernardo Guimarães	1879	19.928.687	- 43.942234	525	Rua Rio de Janeiro	2120	19.932.904	- 43.942491
486	Rua Curitiba	2039	19.929.942	43.944302	526	Rua Santa Catarina	710	19.926.872	43.944912
487	Rua Curitiba	1542	19.925.511	43.943222	527	Rua Santa Catarina	569	19.925.804	43.944535
488	Rua Curitiba	1592	19.926.121	- 43.943391	528	Rua Santa Catarina	1368	19.932.735	- 43.946555
489	Rua Curitiba	1607	19.926.276	43.943317	529	Rua Santa Catarina	1558	19.934.415	- 43.947028
490	Rua Curitiba	2075	19.930.214	43.944375	530	Rua Santa Catarina	1481	19.933.787	43.946735
491	Rua Curitiba	2220	19.931.358	43.944787	531	Rua Santa Catarina	1036	19.929.699	43.945661
492	Rua Curitiba	2307	19.932.312	43.944931	532	Rua Santa Catarina	1235	19.931.701	43.946173
493	Rua Curitiba	1822	19.928.003	43.943908	533	Rua Santa Catarina	1164	19.931.031	43.946105
494	Rua Curitiba	1749	19.927.389	43.943630	534	Rua São Paulo	2630	19.936.765	- 43.944902
495	Rua Curitiba	2578	19.934.607	43.945704	535	Rua São Paulo	1890	19.930.089	43.943089
496	Rua Curitiba	1950	19.929.035	43.944189	536	Rua São Paulo	1665	19.927.953	43.942353
497	Rua Curitiba	2437	19.933.443	43.945271	537	Rua São Paulo	1803	19.929.281	43.942727
498	Rua Espírito Santo	1757	19.929.904	- 43.940129	538	Rua Timbiras	2249	19.925.507	- 43.944761
499	Rua Espírito Santo	1676	- 19.929.015	- 43.940011	539	Rua Tomaz Gonzaga	189	19.932.965	- 43.940637
500	Rua Espírito Santo	2697	19.932.297	43.940821	540	Avenida Andradas	501	19.919.421	43.935022
501	Rua Espírito Santo	2740	19.932.352	43.940955	541	Avenida Andradas	2225	19.920.438	43.922353
502	Rua Espírito Santo	1507	19.927.231	- 43.939451	542	Avenida Andradas	1161	- 19.921.473	- 43.930247
503	Rua Espírito Santo	1897	- 19.930.748	- 43.940377	543	Avenida Andradas	1235	- 19.921.181	- 43.929510
504	Rua Espírito Santo	1972	19.930.864	- 43.940530	544	Avenida Andradas	723	19.921.189	- 43.933918
505	Rua Felipe dos Santos	451	- 19.934.454	- 43.945392	545	Avenida Assis Chateubriand	809	- 19.919.862	- 43.934327
506	Rua Felipe dos Santos	27	- 19.935.357	- 43.941811	546	Avenida Assis Chateubriand	269	- 19.917.397	- 43.929871
507	Rua Felipe dos Santos	524	19.934.237	- 43.945917	547	Avenida Assis Chateubriand	359	- 19.917.926	- 43.930849
508	Rua Felipe dos Santos	228	- 19.934.859	- 43.943349	548	Avenida Assis Chateubriand	176	- 19.916.824	- 43.929095
509	Rua Fernandes Tourinho	805	- 19.937.824	- 43.942431	549	Avenida Assis Chateubriand	26	- 19.916.128	- 43.927765
510	Rua Fernandes Tourinho	725	19.938.002	- 43.941669	550	Avenida Assis Chateubriand	499	- 19.918.621	- 43.932077
511	Rua Fernandes Tourinho	1036	- 19.937.543	- 43.943395	551	Avenida Assis Chateubriand	525	- 19.918.748	- 43.932294
512	Rua Fernandes Tourinho	1057	- 19.937.257	- 43.944744	552	Avenida Assis Chateubriand	573	- 19.918.982	- 43.932695
513	Rua Gonçalves Dias	2180	19.929.203	- 43.945004	553	Avenida Assis Chateubriand	s/n.º	- 19.918.616	- 43.932238
514	Rua Gonçalves Dias	2319	- 19.929.041	- 43.946163	554	Avenida Assis Chateubriand	426	- 19.918.015	- 43.931099
515	Rua Gonçalves Dias	2273	- 19.929.124	- 43.945811	555	Avenida Francisco Sales	340	- 19.918.206	- 43.930557
516	Rua Gonçalves Dias	2010	- 19.929.646	- 43.943285	556	Avenida Francisco Sales	23	- 19.915.535	- 43.931913
517	Rua Marilia de Dirceu	170	- 19.934.327	- 43.946312	557	Rua Aquiles Lobo	12	- 19.917.615	- 43.926726
518	Rua Marilia de Dirceu	48	19.933.512	- 43.945574	558	Rua Aquiles Lobo	411	19.919.833	- 43.930514
519	Rua Professor Antônio Aleixo	531	19.933.193	- 43.945063	559	Rua Aquiles Lobo	479	- 19.919.739	- 43.930488
520	Rua Rio de Janeiro	1584	19.928.312	- 43.941244	560	Rua Brasópolis	140	- 19.918.797	43.927411

561	Rua Conselheiro Rocha	351	- 19.918.577	- 43.921595	601	Rua Goitacazes	1850	- 19.918.988	- 43.954917
562	Rua Conselheiro Rocha	375	19.918.445	43.921410	602	Rua Goitacazes	1914	19.918.833	43.955513
563	Rua dos Caetés	17	19.917.629	43.934159	603	Rua Juiz de Fora	20	19.917.828	43.952148
564	Rua Geraldo Texeira da Costa	141	19.919.455	- 43.931195	604	Rua Juiz de Fora	96	19.918.451	- 43.952308
565	Rua Geraldo Texeira da Costa	239	19.919.898	- 43.931960	605	Rua Juiz de Fora	145	19.919.125	- 43.952451
566	Rua Itambé	200	19.921.405	43.931447	606	Rua Mato Grosso	s/n.°	19.919.265	- 43.946987
567	Rua Marechal Deodoro	8	- 19.916.845	- 43.927046	607	Rua Mato Grosso	224	- 19.919.388	- 43.947064
568	Rua Marechal Deodoro	17	19.916.901	43.927083	608	Rua Mato Grosso	281	19.920.611	43.947329
569	Rua Marechal Deodoro	167	19.917.636	- 43.928423	609	Rua Ouro Preto	25	- 19.917.961	- 43.949288
570	Rua Mucuri	19	19.918.336	- 43.926383	610	Rua Ouro Preto	26	- 19.917.952	- 43.949403
571	Rua Mucuri	297	- 19.919.966	- 43.928370	611	Rua Ouro Preto	46	- 19.918.146	- 43.949454
572	Rua Mucuri	331	19.920.174	- 43.928635	612	Rua Ouro Preto	183	- 19.919.445	- 43.949686
573	Rua Sapucaí	533	- 19.918.681	- 43.932908	613	Rua Paracatu	20	- 19.917.991	- 43.950762
574	Rua Sapucaí	429	- 19.917.452	- 43.932560	614	Rua Paracatu	124	- 19.919.037	- 43.951005
575	Rua Sapucaí	271	19.915.891	- 43.932141	615	Rua Paracatu	171	- 19.919.385	- 43.951053
576	Rua Silva Jardim	235	19.915.118	- 43.929904	616	Rua Rio Grande do Sul	190	- 19.917.625	- 43.945177
577	Rua Tabaiares	72	- 19.918.066	- 43.931926	617	Rua Rio Grande do Sul	238	19.918.032	- 43.945290
578	Rua Tupinambás	19	- 19.918.815	- 43.934560	618	Rua Rio Grande do Sul	294	19.918.507	- 43.945422
579	Rua Tupinambás	30	- 19.918.746	- 43.934551	619	Rua Rio Grande do Sul	340	19.918.908	- 43.945534
580	Rua Urucuia	48	19.917.532	- 43.931392	620	Rua Rio Grande do Sul	s/n.º	19.928.205	- 43.948014
581	Avenida Bias Fortes	1865	- 19.918.618	- 43.947894	621	Rua Rio Grande do Sul	406	- 19.919.554	- 43.945718
582	Avenida Bias Fortes	1742	- 19.918.944	- 43.947365	622	Rua Tamóios	1165	- 19.918.294	- 43.947591
583	Avenida Bias Fortes	1596	19.920.308	- 43.946535	623	Rua Tamóios	1144	19.918.235	- 43.947376
584	Rua Araguari	123	- 19.919.283	- 43.948277	624	Rua Tamóios	1044	19.918.605	- 43.946144
585	Rua Araguari	68	- 19.918.796	- 43.948244	625	Rua Tamóios	999	- 19.918.675	- 43.946030
586	Rua Araguari	33	- 19.918.552	- 43.948051	626	Rua Tenente Brito Melo	23	- 19.917.820	- 43.953467
587	Rua Araguari	184	- 19.919.753	- 43.948523	627	Rua Tenente Brito Melo	93	- 19.918.168	- 43.953482
588	Rua Araguari	247	19.920.339	- 43.948563	628	Rua Tenente Brito Melo	118	- 19.918.391	- 43.953665
589	Rua Araguari	221	- 19.920.112	- 43.948502	629	Rua Tupis	1193	- 19.919.512	- 43.947904
590	Rua Carijós	1079	- 19.917.471	- 43.945539	630	Rua Tupis	1559	- 19.918.649	- 43.951425
591	Rua Goitacazes	1024	- 19.920.885	- 43.947171	631	Rua Tupis	1518	- 19.918.646	- 43.950991
592	Rua Goitacazes	1085	- 19.920.862	- 43.947745	632	Rua Tupis	1252	- 19.919.257	- 43.948496
593	Rua Goitacazes	1272	19.920.314	- 43.949463	633	Rua Tupis	1315	- 19.919.215	- 43.949123
594	Rua Goitacazes	1305	19.920.341	- 43.949791	634	Rua Tupis	1489	- 19.918.819	- 43.950747
595	Rua Goitacazes	1685	- 19.919.457	- 43.953364	635	Rua Tupis	975	- 19.919.965	- 43.946017
596	Rua Goitacazes	1710	- 19.919.295	- 43.953584	636	Rua Tupis	1690	- 19.918.221	- 43.952682
597	Rua Goitacazes	1201	- 19.920.592	- 43.948810	637	Rua Tupis	1699	- 19.918.308	- 43.952784
598	Rua Goitacazes	1428	- 19.919.958	- 43.950935	638	Avenida do Contorno	1066	- 19.915.168	- 43.934180
599	Rua Goitacazes	1478	- 19.919.848	- 43.951396	639	Avenida do Contorno	1374	19.913.308	- 43.930591
600	Rua Goitacazes	1569	- 19.919.733	- 43.952290	640	Avenida do Contorno	1480	- 19.913.369	- 43.930341

	1	1	•	i
641	Avenida do Contorno	1510	19.913.579	43.929380
642	Avenida do Contorno	1580	19.913.726	- 43.928951
643	Avenida do Contorno	1704	- 19.914.233	- 43.928637
644	Avenida do Contorno	1864	- 19.915.759	- 43.927700
645	Avenida do Contorno	1992	- 19.916.432	- 43.927272
646	Avenida do Contorno	2090	- 19.917.394	- 43.926669
647	Avenida do Contorno	2310	- 19.919.101	- 43.925626
648	Avenida do Contorno	2416	- 19.919.989	- 43.925063
649	Avenida do Contorno	2900	- 19.922.171	- 43.921317
650	Avenida do Contorno	3434	19.924.506	- 43.919554
651	Avenida do Contorno	3602	19.925.886	- 43.919926
652	Avenida do Contorno	4154	- 19.930.478	- 43.923127
653	Avenida do Contorno	4456	19.932.585	- 43.924510
654	Avenida do Contorno	4656	19.933.995	- 43.924903
655	Avenida do Contorno	4788	19.935.534	- 43.925309
656	Avenida do Contorno	5284	- 19.939.091	- 43.926886
657	Avenida do Contorno	5472	- 19.939.442	- 43.929674
658	Avenida do Contorno	6010	- 19.939.812	- 43.933683
659	Avenida do Contorno	6224	19.939.952	- 43.935207
660	Avenida do Contorno	6698	19.939.608	43.939795
661	Avenida do Contorno	7086	19.938.705	- 43.943440
662	Avenida do Contorno	7290	19.937.518	- 43.944584
663	Avenida do Contorno	8412	- 19.932.174	- 43.954963
664	Avenida do Contorno	8590	19.930.893	- 43.956177
665	Avenida do Contorno	9894	- 19.919.021	- 43.956636
666	Avenida do Contorno	11430	19.915.601	- 43.944484
667	Rua Bernardo Guimarães	80	19.932.589	- 43.925986
668	Avenida do Contorno	10185	- 19.919.021	- 43.956636
669	Avenida do Contorno	9775	19.922.262	- 43.957587
670	Avenida do Contorno	9515	19.925.541	- 43.958469
671	Avenida do Contorno	8981	19.929.828	- 43.957192
672	Avenida do Contorno	8911	19.930.042	- 43.957108
673	Avenida do Contorno	8835	19.931.168	- 43.956130
	4 :1 1 6 :	8657	19.931.263	- 43.956144
674	Avenida do Contorno		17.751.205	
674 675	Avenida do Contorno Avenida do Contorno	7851	-	- 43.948641
		7851 7529	19.935.055	- 43.948641 - 43.947186
675	Avenida do Contorno		19.935.055 - 19.935.411	- 43.947186 -
675 676	Avenida do Contorno Avenida do Contorno	7529	19.935.055 - 19.935.411 - 19.936.698	- 43.947186 - 43.945352 -
675 676 677	Avenida do Contorno Avenida do Contorno Avenida do Contorno	7529 7439	19.935.055 - 19.935.411	- 43.947186 -

681	Avenida do Contorno	6425	- 19.940.372	- 43.937315
682	Avenida do Contorno	6263	19.940.201	43.935615
683	Avenida do Contorno	5771	- 19.939.721	- 43.930813
684	Avenida do Contorno	4879	19.936.406	43.925281
685	Avenida do Contorno	4731	- 19.934.897	- 43.924895
686	Avenida do Contorno	4265	- 19.930.843	- 43.923136
687	Avenida do Contorno	4045	- 19.929.410	- 43.921830
688	Avenida do Contorno	3963	- 19.928.482	- 43.920955
689	Avenida do Contorno	3575	- 19.925.716	- 43.919608
690	Avenida do Contorno	3481	- 19.924.925	- 43.919393
691	Avenida do Contorno	3389	- 19.924.348	- 43.919277
692	Avenida do Contorno	3257	19.923.265	- 43.918923
693	Avenida do Contorno	2905	- 19.921.977	- 43.921178
694	Avenida do Contorno	2447	- 19.920.248	- 43.924603
695	Avenida do Contorno	1909	- 19.915.905	- 43.927537
696	Avenida do Contorno	1807	- 19.915.097	- 43.927814
697	Avenida do Contorno	1495	- 19.913.187	- 43.930190
698	Avenida do Contorno	1437	19.913.059	43.930711